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Abstract In this survey, I describe some applications of LLL in number theory. I
show in particular how it can be used to solve many different linear problems, to
solve quadratic equations, to compute efficiently in number fields...

1 Introduction

The LLL algorithm has really many applications (on MathSciNet, it is cited in the
references of at least 118 papers and in at least 50 reviews !!)

Among the most famous ones are of course those in lattice theory (the shortest
vector problem : [FinPoh83] and [FinPoh85], [Die85], [Kan84] ; the closest vector
problem : [Bab86], [AgrEriVarZeg02] ...) and also those for factoring polynomials
(for example in [Klu07]), since this was precisely the application Lenstra, Lenstra,
and Lovász presented in their original paper [LLL82]. At least as famous is the
application to the knapsack problem : [Sha82], [Lag83], [FinPoh83] or [Sma98,
§VI.2].

In this survey, I would like to present other selected applications in number the-
ory, all of them leading to revolutionary results.

1. for linear problems : computing gcd’s, kernels, Hermite normal forms, Smith
normal forms, integral relations, linear dependence, algebraic dependence ...

2. solving quadratic equations : Gauss reduction in dimension 3, Shanks’ algo-
rithm for the 2–primary part of the class group Cl

(√
D
)
, reduction of indefinite

quadratic forms, quadratic equations in dimension 4 and more...
3. number fields : polynomial reduction, ideal reduction, computing the class group

and the unit group, solving the principal ideal problem ...
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4. testing conjectures (Hall, abc, Mertens, ...)

Warnings
In most of the applications described in this paper, we only use two properties of

the LLL algorithm. The first is that, when it is given a lattice L of dimension n and
determinant d(L), then LLL outputs a short vector b1 bounded by

|b1|6 2(n−1)/4d(L)1/n .

The geometry of numbers would give better bounds. The second one is that LLL
finds this vector in polynomial time, hence it gives a very efficient algorithm to
solve the different problems.

As noticed in [Coh95, algo 2.6.3, rem 2], LLL only needs to know the Gram
matrix of the lattice. This remark implies that it is equivalent to describe the lattice as
embedded in Rn with the euclidean norm or as Zn equipped with a positive definite
quadratic form q. The result of LLL is then an integral unimodular transformation
matrix, or just an n–tuple (x1, . . . ,xn) 6= (0, . . . ,0) of integers such that

q(x1, . . . ,xn)6 2(n−1)/2 det(q)1/n .

In this paper, LLL will be used mainly in small dimension : almost always n6 30,
and very often n 6 6. However, the coefficients may have hundreds or thousands of
digits.

2 Reducing Linear Forms

A significant part of the material of this section comes from [Coh95, §2.7] and
[Sma98, §IV.3 and IV.4].
• The best approximations of a real number α by rational numbers are usu-

ally obtained by the continued fraction algorithm. As suggested in [LLL82], another
way to obtain good approximations is to reduce the quadratic form

q(x,y) = M(αx− y)2 +
1
M

x2 ,

where α is usually a decimal approximation of α to precision 1
M . Indeed, when M is

large and (x,y) is a short vector for the quadratic form q, then q(x,y) = O(1), which
implies x = O

(√
M
)

and αx−y = O
(

1√
M

)
. Typically, this implies |x| ≈ |y| ≈

√
M

and |α− y
x | ≈

1
M .

More explicitly, it consists of reducing the lattice Z2 equipped with the quadratic
form q(x,y) = M(αx− y)2 + 1

M x2, or of applying the LLL algorithm with the 2–
dimensional Gram matrix (

α
2M+ 1

M −αM
−αM M

)
.
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This Gram matrix has determinant equal to 1, hence corresponds to a lattice of de-
terminant 1. The underlying lattice in the euclidean plane R2 is given by the matrix(

1√
M

0
α
√

M −
√

M

)
.

The result of LLL is then a unimodular integral transformation matrix
(

a b
c d

)
and

the desired short vector (x,y) is just (a,c). Indeed, the bound given by LLL asserts
that q(x,y)6

√
2. This inequality implies two others, namely{

|αx− y|6 21/4
√

M

|x|6 21/4
√

M .

Using now the inequality |α−α|6 1
M , we find

|αx− y|6 25/4
√

M
.

Example : Assume that we want to find a good rational approximation of α = π ,
using the decimal approximation α = 3.1415926536. We have ten correct deci-
mals, so we choose M = 1010. The shortest vector found by LLL is then (x,y) =
(99532,312689). We indeed see that |x| ≈ |y| ≈ 105 ≈

√
M and

∣∣π− y
x

∣∣ ≈ 0.3×
10−10 ≈ 1

M . This rational approximation is exactly the same as the one given by
the continued fraction expansion of π , corresponding to the eight first coefficients
[3,7,15,1,292,1,1,1].

When we use the approximation π ≈ 31415926536×10−10, all the information
is contained in the 10 digits of the numerator, and almost nothing in the denominator.
In the other approximation π ≈ 312689

99532 , the information is equally distributed into the
numerator and the denominator, but a total of 10 digits is still necessary. There is no
gain of storage to use either representation.

If α is close to 1, it might also be interesting to consider the more symmetrical
quadratic form

q(x,y) = M(αx− y)2 +
1
M
(x2 + y2) .

• There is an analog of this algorithm for p–adic approximation (for example in
[Sma98, §VI.4]). If p is a prime number and α is a p–adic unit, approximated mod-
ulo pm by a rational integer α , then we can look for a short vector for the quadratic
form

q(x,y,z) = M2(αx− y− pmz)2 +
1
M
(x2 + y2) .

The Gram matrix of q is
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2M2 + 1

M −αM2 −αM2 pm

−αM2 M2 + 1
M M2 pm

−αM2 pm M2 pm M2 p2m


and its determinant is p2m. It corresponds to the lattice in R3 generated by

1√
M

0 0
0 1√

M
0

αM −M −pmM


of determinant pm. Applied to this 3–dimensional Gram matrix, LLL returns a short
integral vector (x,y,z) satisfying the inequality

q(x,y,z)6 23/2 p2m/3 ,

from which we deduce in particular

|αx− y− pmz|6 23/4 pm/3M−1 .

If we choose M such that 23/4 pm/3 < M < 2pm/3, we have |αx− y− pmz|< 1 which
implies that αx− y− pmz = 0, since this is an integer. It now remains

x2 + y2 6 25/2 pm ,

whence {
|x| 6 25/4 pm/2

|y| 6 25/4 pm/2 .

In summary, we have found rational integers x and y such that |x| and |y| are both
O(pm/2). Furthermore, when α is a p–adic unit, x is also a p–adic unit, and we have
a p–adic approximation |α− y

x |p ≈ p−m with the real bounds |x| ≈ |y| ≈ pm/2.
When m = 1, this result proves that any element in F∗p can be represented by a

fraction y
x with |x|=O(p1/2) and |y|=O(p1/2). The corresponding algorithm is just

an application of LLL in dimension 3.
In this application, we have used a lattice of dimension 3, but a careful reading

reveals that because of the relation αx− y− pmz = 0, the constructed short vector
lies in a dimension 2 sublattice. De Weger [Weg86] describes an algorithm where
this idea is used and where LLL is only applied in dimension 2.
Example : Consider the prime number p= 1010+19 and the p–adic number α = 16

17 .
Its p–adic expansion is α = 7647058839+ 9411764723p+ 2352941180p2 + . . . .
Using the described algorithm, with m = 3, α = 7647058839 + 9411764723p +
2352941180p2 = 235294118988235296665882354556, LLL quickly finds the short
vector (x,y,z) = (17,16,4), hence recovers the original fraction.
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• The previous approach (either real or p–adic) easily generalizes to obtain small

values of a linear form L(x1, . . . ,xn) = xn +
n−1

∑
i=1

αixi in dimension n, evaluated at

small integers x1, . . . ,xn. In the real case, we just have to reduce the quadratic form

Mn−1L(x1, . . . ,xn)
2 +

1
M

n−1

∑
i=1

x2
i

(this also appears in [LLL82]).
Even more generally, if we are given n linear forms L1, . . .Ln in n+m variables

x1, . . . ,xn+m, then we will have a simultaneous approximation if we reduce the
single quadratic form

W1L1(x1, . . . ,xn+m)
2 + · · ·+WnLn(x1, . . . ,xn+m)

2 +Wn+1x2
n+1 + · · ·+Wn+mx2

n+m ,

where the Wi are weights that are to be chosen depending on how much the linear
forms and the coefficients have to be reduced compared to each other. This applica-
tion to Diophantine approximation is described for example in [Lag85]. Many other
applications of LLL applied to linear forms in logarithms are given in [Sma98, part
2] or in [Han07].

• For example, if the coefficients of the Li are integers and if we want to insist on
having exactly Li(x1, . . . ,xn+m) = 0 for all i = 1, . . . ,n, we will choose very large
weights Wi, i = 1, . . . ,n and the other weights very small. This approach is used
by [Poh87] to compute the kernel of an integral matrix and to give a modified
version of LLL, called MLLL, applicable not only on a basis of a lattice, but also
on a generating set of vectors b1, . . . ,bn+m of a lattice of dimension n. The result of
this algorithm is then a reduced basis of the lattice together with a matrix containing
m independent relations among the bi. See also [Coh95, §2.7.1].
Example : Consider the matrix

M =

2491 5293 1032 5357 9956
6891 4280 3637 3768 4370
5007 4660 5712 7743 4715

 ,

which has been chosen randomly with coefficients less than 104. Its kernel has di-
mension 2, and using gaussian elimination, we find that this kernel is generated by

59229512635
82248101629

33495205035
82248101629

− 94247651922
82248101629 −

180166533113
82248101629

− 86522262381
82248101629

49731399425
82248101629

1 0
0 1

 .

Consider now the quadratic form A4(2491v+5293w+1032x+5357y+9956z)2 +
A4(6891v + 4280w + 3637x + 3768y + 4370z)2 + A4(5007v + 4660w + 5712x +
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7743y+4715z)2 +A−6y2 +A−6z2 or equivalently the lattice
2491A2 5293A2 1032A2 5357A2 9956A2

6891A2 4280A2 3637A2 3768A2 4370A2

5007A2 4660A2 5712A2 7743A2 4715A2

0 0 0 A−3 0
0 0 0 0 A−3

 .

This lattice has determinant c, with c = 82248101629. We now apply LLL to this
quadratic form. If A is large enough (here A > 13 works) then the values of the
quadratic form are so small that the first two columns of the unimodular transfor-
mation matrix

U =


6845 −300730 −53974 121395 −138794

285983 782775 114176 −446636 387087
−240869 202704 56844 19781 73475
118346 −306061 −64578 75646 −131789
−192463 −197241 −18341 164323 −107769


are the coordinates of kernel. We can see that the coefficients are much smaller (6
digits) than with the other method (11 digits) Here, we have

MU =

0 0 0 −1 0
0 0 0 0 −1
0 0 1 0 0

 .

In [HavMajMat98], this idea is used to solve the extended gcd problem : given
integers s1, . . . ,sm, find a vector x = (x1, . . . ,xm) with integral coefficients and small
euclidean norm such that x1s1 + · · ·+ xmsm = gcd(s1, . . . ,sm). The method is gen-
eralized to the problem of producing small unimodular transformation matrices for
computing the Hermite Normal Form of an integer matrix (in [HavMajMat98])
and for computing the Smith Normal Form (in [Matwww] and [Jag05]).

•We can also want to find Z–linear relations among real numbers. In a computer,
an integer relation between real numbers can not of course be tested to be exactly 0,
but only if it is small. This means that if an integer relation really exists, then LLL
will probably find it. But LLL can also find other Z–linear combinations that are not
0 but just small. In fact, if the relation is not exactly 0, it is usually possible to prove
it just be computing it with enough precision. However, it is the responsibility of the
mathematician to prove that a relation found by LLL is exactly 0.
Example : We are aware of Machin’s formula

aarctan(1)+barctan
(

1
5

)
+ carctan

(
1

239

)
= 0 ,
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where a, b, and c are small integers, but we do not know their values. We apply LLL
to the quadratic form

A2
(

aarctan(1)+barctan
(

1
5

)
+ carctan

(
1

239

))2

+(b2 + c2)

or to the lattice arctan(1)A arctan
( 1

5

)
A arctan

( 1
239

)
A

0 1 0
0 0 1


with a large value of A. If A is not large enough, LLL suggests that arctan

( 1
239

)
≈ 0.

Is is clearly true, but not exactly 0. If A > 1000, LLL suggests the relation

arctan(1)−4arctan
(

1
5

)
+ arctan

(
1

239

)
≈ 0 .

Now a rigorous proof that this is exactly 0 comes with the observation that through
the transformation exp(2iarctan t) = 1+it

1−it the relation is equivalent to

(1+ i)(1+5i)−4(1+239i)
(1− i)(1−5i)−4(1−239i)

= 1 .

Other algorithms for detecting integer relations between reals are given in the pa-
pers [FerFor79] and [FerBaiArn99] (without LLL) and [HasJusLagSchHel89] (with
LLL). See also the lindep function in GP/PARI, described in [Coh95, §2.7.2].

Using these algorithms, Borwein and Bradley [BorBra97] have for example tried
to generalize Apéry’s formula

ζ (3) =
5
2

∞

∑
k=1

(−1)k+1

k3
(2k

k

) .

After an extensive search they suggested that there is no formula of the type

ζ (5) =
a
b

∞

∑
k=1

(−1)k+1

k5
(2k

k

)
at least as long as a and b are not astronomically large. However, they found

ζ (7) =
5
2

∞

∑
k=1

(−1)k+1

k7
(2k

k

) +
25
2

∞

∑
k=1

(−1)k+1

k3
(2k

k

) k−1

∑
j=1

1
j4 ,

and similar expressions for ζ (9), ζ (11), and proposed the following conjecture

∞

∑
s=0

ζ (4s+3)x4s =
1
2

∞

∑
k=1

(−1)k+1(2k
k

)
k3

5k
k4− x4

k−1

∏
n=1

(
n4 +4x4

n4− x4

)
.
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This was later proved to be true by [AlmGra99]. Similar methods and results are
also obtained about ζ (2s+2) in [BorBra06].

• A special case of integer relations between real (or complex) numbers is the case
when the real numbers are powers of the same real number. In this case, a linear
relation ∑

n
i=1 xiα

i = 0 proves that α is an algebraic number of degree at most n
and the given polynomial ∑

n
i=1 xiX i ∈ Z[X ] is a multiple of its minimal polynomial.

In some sense, LLL is able to recover the minimal polynomial of an algebraic
number. It is important to remark that in this algorithm, the degree n is fixed, so
that it can only find a polynomial if we have a bound on its degree. See for example
the algdep function in GP/PARI, described in [Coh95, §2.7.2].

In practice, since we only work with real approximations of α , the polynomials
found are only candidates. However, it is quite common that checking the vanishing
of a polynomial at α is easy. Hence, the algorithm can be used in both ways: either
to give evidence that α is a transcendental number, or to build a polynomial taking
such a small value at α , that there is a high chance that it in fact vanishes exactly at
α .

This method has been used in [KanMcG86] to give evidence that the numbers
e± π and some other numbers are transcendental. It is described in more details
in [KanLenLov88], where a surprising application is given for the factorization of
polynomials in Z[X ]: Start with a polynomial P ∈ Z[X ] of degree n and compute
sufficiently many digits of the real and imaginary parts of a root α (using your
preferred method, for example by Newton’s method) ; then use the algorithm to
look for an integral polynomial Q vanishing at α ; if Q divides P, we are done,
otherwise P has no proper factor. See also [Len84]. Other polynomial factorization
algorithms using LLL are given in [Sch84] or [Klu07].
Example : Imagine we would like to prove that α = e+π is an algebraic number
of degree 4. This would mean that there are integers a4, a3, a2, a1, and a0, not all 0,
such that a0α4 +a1α3 +a2α2 +a1α +a0 = 0. Using an approximation of α to 20
decimals, LLL suggests the relation

127α
4−399α

3−2268α
2 +1849α−2417≈ 0 .

In order to verify this relation, we increase the precision of α to 40 decimals and ob-
serve that the expression is not 0, but close to−4.6 10−13. Using this new precision,
LLL now suggests a new relation

3498343α
4−940388α

3−116624179α
2 +761230α +64496487≈ 0 .

Repeating this procedure always gives a tentative polynomial with growing coef-
ficients, but never vanishing exactly at α . Of course, this does not prove that α is
transcendental, and it does even not prove that is not algebraic of degree 4. However,
it proves that there is no quartic polynomial with small coefficients vanishing at α .

Another illustration of this application of LLL is given in [KalYui91]. See also
[Coh00, §6.3.2]. For an imaginary quadratic field K of discriminant d, the Hilbert
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class field of K is of relative degree h = #Cl(K) over K. If (αk)1≤k≤h are the roots of
h inequivalent binary quadratic forms of discriminant d, then jk = j(αk) (where the
function j is the modular function) are the roots of a degree h polynomial Hd ∈ Z[X ]
defining exactly the Hilbert class field of K. Instead of computing each of the h
values jk, it is possible to compute just one such value and to recover the whole
polynomial using the previous algorithm. However, since the coefficients of Hd are
usually quite large, it is preferable to use the Weber function f (z) instead of the
modular function j(z). The corresponding polynomial hd still defines the Hilbert
class field, but the coefficients can be 12 times smaller.
Example : For the discriminant d =−32, the class number is 3 and the class group
is cyclic of order 3, generated by P = 2x2 +x+3. Its roots in the upper half plane is

α1 =
−1+ i

√
23

4
≈−0.25+1.19895788082817988539935951604i .

We can now compute

j(α1)≈ 737.849984966684102752369273665
+1764.01893861274614164378642717i .

This should be an algebraic integer of degree 6 (and in fact of degree 3). Now,
LLL suggests that the minimal polynomial of j could be P = x3 + 3491750x2 −
5151296875x+12771880859375. It only remains to prove that this polynomial in-
deed defines an unramified extension of Q(

√
−23), but this is a different story ! A

good test is that the norm of j should be a cube. Here, we have 12771880859375 =
233753.

3 Solving Quadratic Equations Over the Rationals

In this section, we consider the problem of solving quadratic equations over Q. Since
testing the solvability of these equations is usually easy, we can always assume that
they are indeed solvable.

The first nontrivial family of quadratic equations that are interesting to solve
are the ternary quadratic equations q(x,y,z) = 0, with rational coefficients and un-
knowns. Among them is the diagonal equation, also called Legendre’s equation :
ax2+by2+cz2 = 0. Usually the general nondiagonal equation q(x,y,z) = 0 is trans-
formed into a diagonal one of Legendre type. For Legendre’s equation, a great deal
of algorithms exist.

For example, in [Ser88, Ch. IV §3] or [Sma98, Ch. IV §3.3], the solution of
ax2 +by2 +cz2 = 0 is deduced from the solution of a′x2 +b′y2 +c′z2 = 0 where the
new coefficients are smaller than the old ones. However, this reduction depends on
the possibility of extracting square roots modulo a, b or c, which is only possible if
we know the factorization of abc. During the whole algorithm, the total number of
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factorizations is quite large. The worst drawback is certainly that the numbers that
have to be factored may also be quite large. Solving quadratic equations with these
algorithms uses only a few lines in theory, but is extremely slow in practice.

Fortunately, a couple of algorithms exist, which do not factor any other integers
than a, b, and c. It seems impossible in general to avoid these three factorizations.
Such an algorithm is given in [CreRus03]. In practice it indeed runs fast.

Other algorithms exist, which use the reduction theory of lattices. They all share
the same property of using no other factorization than that of abc. Since the LLL
algorithm can reduce quadratic forms, it is not surprising that it can be used to
solve quadratic equations over the rationals. However, if a quadratic equation has a
solution, it is certainly not positive definite. The problem is that LLL can a priori
only handle positive definite quadratic forms. There are two ways to go around this
problem :

• either build a new quadratic form, which is positive definite and the reduction of
which can help us in solving the initial quadratic equation,

• or adapt LLL to indefinite quadratic forms.

A positive definite quadratic form attached to the problem is of course q= |a|x2+
|b|y2 + |c|z2. However, reducing Z3 with this quadratic form will not give anything,
since it is already orthogonal hence reduced. According to [CocMit98], if a, b, and
c are coprime squarefree integers, some integral solutions of ax2 +by2 +cz2 = 0 lie
in a sublattice of Z3 of index 2|abc| defined by the congruences

by−λ1z ≡ 0 (mod a)
ax−λ2z ≡ 0 (mod b)
ax−λ3z ≡ 0 (mod c)

plus another condition modulo a power of 2, where λ1, λ2, and λ3 are any choice of
square roots of−bc,−ac,−ab modulo a, b, and c respectively. A smallest vector of
this lattice (equipped with the positive definite quadratic form |a|x2 + |b|y2 + |c|z2)
will give a solution. Using this algorithm, we see that LLL (in dimension 3) can be
used to solve Legendre’s equation.

The method of Gauss himself in [Gauss, sections 272, 274, 294] in 1801, was
already similar, since he builds the same lattice, using the same congruences. But
Gauss reduces directly the corresponding indefinite quadratic form. We can sum-
marize his method in two steps : 1) compute square roots modulo a, b, and c, and
build another quadratic form with determinant −1 ; 2) Reduce and solve this new
quadratic form. The reduction of the indefinite quadratic form suggested by Gauss
works simultaneously on the quadratic form and its dual. It is quite different from
any version of LLL. This reduction algorithm is analyzed in [Lag80] and proved to
run in polynomial time. It is interesting to note that the algorithm is used in [Sha71]
and [BosSte96] to compute in polynomial time the 2–Sylow subgroup of the class
group Cl

(√
D
)
.

The algorithms described up to now are quite specific to solve Legendre equa-
tions, that is diagonal ternary quadratic equations over Q. Some of them can also
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solve semi–diagonal equations (of the form ax2 +bxy+ cy2 = dz2, but are not able
to solve general ternary quadratic equations. Of course, it is always possible to di-
agonalize any quadratic equation, but if we do so, the integers that are to be factored
may be huge (hence impossible to factor in a reasonable amount of time) compared
to the determinant of the original equation. An example is given in [Sim05] of an
equation with determinant equal to −1 and coefficients having more than 1300 dec-
imal digits : reducing the equation to a diagonal one would require the factorization
of integers of that size !

In [Sim05] an algorithm is given to solve general ternary quadratic equations,
without requiring other factorizations than that of the determinant. The main strat-
egy follows Gauss :

• compute first an integral quadratic form, equivalent to the initial one, which has
determinant −1 (this is the minimization step);

• then reduce this indefinite quadratic form (this is the reduction step).

The minimization step only uses linear algebra modulo the prime divisors of the
determinant. The reduction step could certainly use the reduction of Gauss, but an-
other reduction algorithm is proposed. In fact when we apply LLL to a quadratic
form which is indefinite, without changing LLL, the algorithm may enter into in-
finite loops. Indeed, the swap condition in the algorithm (also called the Lovász
condition) is just

|b∗i +µi,i−1b∗i−1|2 < c|b∗i−1|2 ,

which tests whether the norm of the vector b∗k−1 decreases when we interchange
bk−1 and bk. In terms of the underlying quadratic form q, this test is equivalent to

q(b∗i +µi,i−1b∗i−1)< cq(b∗i−1) .

In the case where q is not positive definite, these quantities may be negative, and a
swap may increase their absolute values. If we just add absolute values in this test

| q(b∗i +µi,i−1b∗i−1) |< c | q(b∗i−1) | ,

the new algorithm, which we call the Indefinite LLL, has the following properties :

Theorem 1 (IndefiniteLLL). Let q be a quadratic form over Zn defined by q(x) =
xtQx with a symmetric matrix Q ∈Mn(Z) such that det(Q) 6= 0. The output of the
IndefiniteLLL Algorithm applied with a parameter 1

4 < c < 1 to a basis b1, . . . , bn
of Zn is

• either some x ∈ Zn such that q(x) = 0,
• or a reduced basis b1,. . . ,bn such that

|(b∗k−1)
2|6 γ|(b∗k)2| for 1 < k 6 n ,

and
1 6 |(b1)

2|n 6 γ
n(n−1)/2|det(Q)| ,
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where γ =
(
c− 1

4

)−1
> 4

3 .

If furthermore q is indefinite, we have

1 6 |(b1)
2|n 6 3

4
γ

n(n−1)/2|det(Q)| .

For a better comparison with the standard properties of LLL–reduced bases, we have
used the notation (b)2 for q(b), which needs not to be positive in this situation. In
both cases, the algorithm finishes in after a polynomial number of steps. We have
now an efficient way to solve general ternary quadratic equations. Combining the
algorithm of [Sha71] and [BosSte96] with this indefinite LLL, we can now claim
that LLL can also compute the 2–Sylow subgroup of the class group Cl

(√
D
)
.

One of the key point of this algorithm is to reduce indefinite quadratic forms. Up
to now, we have seen two algorithms for this : one by Gauss, which only works in di-
mension 3, and one in [Sim05], which also works in higher dimensions. In fact, other
algorithms exist. For example, in [IvaSza96] an algorithm very similar to [Sim05] is
given. The main difference is in the way it handles isotropic vectors. In one case, the
algorithm simply stops, whereas in the other case it applies a complicated subrou-
tine. Because of this small difference, the quality of the reduction proved in [Sim05]
is slightly better than LLL, whereas it is worse than LLL in [IvaSza96]. I would like
to mention a last algorithm used for the reduction of indefinite quadratic forms.
Assume that the indefinite quadratic form q is diagonal in some basis (typically ob-
tained by a Gram-Schmidt procedure). Then we can bound |q| by the quadratic form
q′ obtained just by taking the absolute values of the coefficients of q in this basis!
Since these quadratic forms have the same determinant (up to sign), a reduced basis
for q′ will also be a reduced basis for q, and the quality of the reduction will be ex-
actly the same as in LLL. This is precisely what is suggested in [CocMit98], where
the diagonal form ax2+by2+cz2 is bounded by |a|x2+ |b|y2+ |c|z2. The only draw-
back of this method is that during the diagonalization step, we may introduce large
denominators, a fact that can slow down the algorithm. No serious comparison has
been done between these different algorithms.

A generalization of the previous algorithms has been recently proposed in
[Sim06] to solve quadratic equations in higher dimensions. The main strategy
of minimization/reduction still works, but in a different way. A quadratic form q in
dimension n is minimizable if we can find an integral quadratic form q′ with de-
terminant ±1 and equivalent to q over Q. For an indefinite ternary quadratic form,
minimizability is equivalent to solvability. In higher dimension n≥ 4, this property
is not true any more.

When n= 4, we can use a trick of Cassels [Cas59] : there exists a binary quadratic
form q2 such that q⊕ q2 is minimizable and is equivalent to H⊕H⊕H, where H
is an hyperbolic plane (the ⊕ notation denotes the direct sum of quadratic modules;
in terms of matrices, it just corresponds to taking the larger matrix, which is diag-
onal by blocks, and the blocks are q and q2). This binary quadratic form q2 can be
computed explicitly from the local invariants of q and from the 2–Sylow of the class
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group Cl
(√

D
)

(D being the determinant of q). Hence, using LLL and [BosSte96],
we can build this q2 as soon as we know the factorization of D ! Now, the indefinite
LLL algorithm rapidly gives the equivalence between q⊕ q2 and H⊕H⊕H (this
is the reduction step). The remaining part of the algorithm is just linear algebra : a
vector in the intersection of a 3–dimensional isotropic subspace for H⊕H⊕H with
another 4–dimensional subspace (in the ambient space of dimension 6) will give a
solution for q(x) = 0.

When n≥ 5, a similar trick applies, except that the minimization works either in
dimension n, n+1, n+2 or n+3.

4 Number Fields

I see two main reasons why the computation of class groups in imaginary quadratic
fields are feasible. The first one is that thanks to the correspondence between ideals
and quadratic forms (see [Coh95, §5.2]), we can use Gauss reduction. The sec-
ond one is McCurley’s sub–exponential algorithm described in [HafMcC89]. This
algorithm assumes the validity of the Generalized Riemann Hypothesis. It is also
described in [BucDul91] or [Coh95, §5.5]. It relies on the notion of relations, that
is expressions of ideals a in the form

a= α ∏ fei
i ,

where α is an element of K∗ and fi are the ideals of the factor basis.
McCurley’s algorithm has been extended to general number fields. In [Buc90]

and [CohDiaOli93] (see also [Coh95, §6.5] and [Bel04]), it is explained how one
can compute simultaneously the class group and the units from the relations between
ideals. It is also explained how one can perform the ideal reduction. The idea is the
following.

• The K be a number field of degree n over Q with signature (r1,r2). Let σ1, . . . ,σr1
be the real embeddings of K and σr1+1, . . . ,σn the complex embeddings. For an
element x ∈ K, we define the T2–norm of x to be ‖x‖=

√
T2(x) where

T2(x) =
n

∑
i=1
|σi(x)|2 .

This T2–norm can immediately be extended to Rn ' K⊗QR and defines a positive
definite quadratic form. Equipped with this quadratic form, the ring of integers ZK
of K is a lattice of determinant det(ZK) = |discK|1/2. Choosing an LLL–reduced
basis (wi) of ZK (for the T2–norm) will give ZK the property that elements with
small coefficients will also have a small (algebraic–)norm. This is just an application
of the arithmetic–geometric mean :
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n|NK/Q(x)|2/n 6 T2

(
n

∑
i=1

xiwi

)
6

(
n

∑
i=1

x2
i

)(
n

∑
i=1

T2(wi)

)
.

Of course the converse is not true since in general there are infinitely many units,
that is elements of ZK such that NK/Q(x) = ±1, but there are only finitely many
elements with bounded T2–norm or bounded coefficients. As indicated in [Bel04],
choosing an LLL–reduced basis for the T2–norm, usually gives a faster arithmetic
in the number field.

• The polynomial reduction algorithm described in [CohDia91] and [Coh95,
§4.4.2] is a byproduct of this reduction. Indeed, if we have an irreducible polyno-
mial, with splitting field K, one can compute an LLL-reduced integral basis of ZK ,
and look for a primitive element with small coefficients. Its minimal polynomial
usually has small coefficients. For example, if we look for a defining polynomial for
the field Q(i,

√
2,
√

3,
√

5) the function polcompositum of PARI/GP (which
implements the standard idea of the proof of the primitive element theorem) gives

x16−72x14 +1932x12−22552x10 +154038x8−582456x6

+1440748x4−1486824x2 +3721041

with discriminant 231235058746432. The function polredabs of PARI/GP im-
plements this polynomial reduction algorithm and just finds the polynomial

x16−7x12 +48x8−7x4 +1

having discriminant 26433258.

• From my point of view, the most important application of this is the notion
of LLL–reduction of ideals introduced in [Buc90] and [CohDiaOli93], [Coh95,
§6.5.1]. Any integral ideal a of ZK of norm NK/Q(a) is a sublattice of ZK of in-
dex NK/Q(a). Hence, we can apply LLL to this sublattice. A short vector for this
T2–norm is certainly an element of a, that is an element a ∈ ZK satisfying a = ab
for some integral ideal b such that NK/Q(b) is bounded independently of a (no-
tice that this claim gives a proof of the finiteness of the class group). If b = 1, we
have found a generator of the principal ideal a. If the ideal b can be factored in
the factor basis, we have a relation. This is exactly the way relations are found in
McCurley’s algorithm. Hence, we see that combined with McCurley’s algorithm,
LLL gives a way to compute class groups and solve the principal ideal problem.
Furthermore, relations among principal ideals give units. More precisely, a relation
of the type αZK = βZK is equivalent to the fact that αβ−1 is a unit. Hence, the
algorithm is also able to compute the unit group.
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5 Conclusion : Breaking Records

It is a popular belief that when one wants to break records in number theory, one
has to use LLL. The applications of LLL given in this section are therefore more
isolated, but all serve the same goal : testing conjectures with numerical evidences.

• A revolutionary application was given in 1985 by Odlyzko and te Riele in
[OdlRie85], where they give a disproof of the very old conjecture of Mertens.
This conjecture says that if we consider the Möbius function µ(n) and its count-
ing function M(x) = ∑n6x µ(n), then we should have |M(x)| <

√
x. After hav-

ing computed the 200 first zeros of the Riemann zeta function and used LLL
in dimension 200, they were able to prove that limsupM(x)x−1/2 > 1.06 and
liminfM(x)x−1/2 < −1.009. It has been improved in [KotRie06] using the same
technics to limsupM(x)x−1/2 > 1.218 and liminfM(x)x−1/2 <−1.229.

• In a very surprising paper, [Elk00], Elkies applies LLL, not to compute points on
curves, but to compute points near curves with small height. The naive idea to list
points of small height on a curve defined by an homogeneous equation F(x,y,z) = 0
is to loop on all possible values for x and y with |x| < N and |y| < N, compute the
corresponding values of z and test for their height. If we also want points near the
curve, a loop on z is also needed. If we are looking for points at distance at most δ

to the curve, the idea of Elkies is to cut the curve into small pieces, each of length
= O(δ 1/2). For each piece, the curve is approximated by a segment, and the search
region is approximated by a box B of height, length and width proportional to N,
δ 1/2N, δN. Hence, as soon as δ � N−2, we can expect that the box B of volume
N3δ 3/2 will contain O(N3δ 3/2) integral points. Now, finding all integral points in
a box is a standard application of LLL : find a reduced basis of B and loop over all
points with small coefficients in this basis. Using this approach, he is able to find
the following surprising relations :

3866927 +4114137 ≈ 4418497 ,

2063π +8093π ≈ 8128π .

This last example raises the question whether there are infinitely many integral so-
lutions to |xπ + yπ − zπ |< 1. Using some more tricks leads to the relation

58538865167812233−4478849284284020423079182 = 1641843

which is related to Hall’s conjecture, telling that if k = x3− y2, then |k| �ε x1/2−ε .
This example satisfies x1/2/|x3− y2| > 46.6, improving the previous record by a
factor of almost 10.

• See also [Dok04] for examples related the the abc conjecture and the Szpiro con-
jecture.
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Bordeaux., Sér. II 3, No.2, 351–360 (1991).

[CohDiaOli93] H. Cohen, F. Diaz y Diaz, M. Olivier : Subexponential algorithms for class group
and unit computations, J. Symbolic Comput. 24, No 3–4, 433–441 (1997), Computational alge-
bra and number theory (London, 1993).

[CreRus03] J.E. Cremona, D. Rusin: Efficient solution of rational conics, Math. Comp. 72, 1417–
1441 (2003).

[Die85] U. Dieter : Calculating shortest vectors in a lattice Ber. Math.-Stat. Sekt. Forschungszent.
Graz 244, 14 p. (1985).

[Dok04] T. Dokchitser : LLL & ABC, J. Number Theory 107, No.1, 161–167 (2004).
[Elk00] N.D. Elkies : Rational points near curves and small nonzero |x3−y2| via lattice reduction,

W. Bosma (ed.), Algorithmic number theory. 4th international symposium. ANTS-IV, Leiden,
the Netherlands, July 2-7, 2000. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 1838,
33–63 (2000).

[FerBaiArn99] H.R.P. Ferguson, D. Bailey, S. Arno : Analysis of PSLQ, an integer relation finding
algorithm, Math. Comput. 68, No.225, 351–369 (1999).

[FerFor79] H.R.P. Ferguson, R.W. Forcade : Generalization of the Euclidean algorithm for real
numbers to all dimensions higher than two, Bull. Am. Math. Soc., New Ser. 1, 912– 914 (1979).

[FinPoh83] U. Fincke, M. Pohst : On reduction algorithms in non-linear integer mathematical
programming, Operations research, Proc. 12th Annu. Meet., Mannheim 1983, 289–295 (1984).

[FinPoh85] U. Fincke, M. Pohst : Improved methods for calculating vectors of short length in a
lattice, including a complexity analysis, Math. Comput. 44, 463–471 (1985).

[Gauss] C.F. Gauss: Disquisitiones Arithmeticae, Springer Verlag (1986).



Selected Applications of LLL in Number Theory 17

[HafMcC89] J. Hafner, K. McCurley : A rigorous subexponential algorithm for computation of
class groups, J. Amer. Math. Soc. 2, no. 4, 837–850 (1989).

[Han07] G. Hanrot : LLL : A tool for effective diophantine approximation, this volume.
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