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Abstract. — Given a number field K with r; real embeddings o1,...,0r;, the
signature of a nonzero element x is the r1—tuple of the signs of the o;(x), represented
as elements in the finite field Fo with two elements. We show that the pseudo-units
of K take at least 292 different signatures, with %1 < dz. We exhibit some explicit
examples to show that this lower bound does not hold for the group of units of K.
We also give some numerical evidence for conjectures about the optimality of this
lower bound.

Résumé (Signature des unités et des pseudo—unités). — Dans un corps de
nombres K ayant r; plongements réels o1, ..., 0, la signature d’un élément non nul
z est le ri—uplet formé des signes des o;(x), représentés comme éléments du corps
fini Fo & deux éléments. Nous montrons que les pseudo—unités de K prennent au
moins 292 signatures différentes, avec % < d2. Nous montrons & ’aide de quelques
exemples que cette minoration n’est pas vraie si ’on considére les unités de K. A
partir d’exemples numériques explicites, nous énoncons deux conjectures relatives &
Poptimalité de cette minoration.

Introduction

Let K/Q be a number field of degree n with r1 real embeddings. The signature of an
element x € K™ is the tuple of the signs of its r; real embeddings, seen as elements of
the finite field Fo: this gives a well defined group homomorphism sgn : K* — (Fy)™.
Of course, the square of an element of K* is totally positive, and we can define
sgn on the quotient K /(K *)?, making sgn a linear map of vector spaces over F.
Several questions arise concerning sgn when restricted to a subgroup G of K* or of
K*/(K*)?, among which two are classical:

Question 1. — Is a totally positive element of G always a square? If not, what can
be said about the group that measures the default?
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Question 2. — How many different signatures can take elements of G?

Question 1 is the question of the injectivity of sgn. Since K* /(K *)? is an infinite
dimensional Fo—vector space, sgn is very far from being injective. Injectivity can
only hold if we restrict to finite subgroups G of dimension over Fy at most r;. An
interesting case is the group of units (modulo squares of units), which has dimension
exactly r; over Fy when the field K is totally real. The first nontrivial example is
when K is a real quadratic number field: in this case, the injectivity is equivalent to
the surjectivity, and is equivalent to the existence of a unit with norm —1. In [6],
Garbanati proves that this equivalence still holds in the more general case of a real
Galois extension of Q of degree a power of 2.

Question 2 is the question of the dimension over F, of the image of sgn, and
possibly of its surjectivity. The well-known Approximation Theorem asserts that sgn
is surjective for G = K*. Weber [11] proves that if G is the group generated by
the units in the real subfield of the cyclotomic field Q({yx), then sgn is surjective,
and Garbanati [5] considers the subgroup of circular units in real abelian extensions
of Q. In [3], Berger considers some totally real number fields and proves that sgn
is surjective when restricted to their group of units (resp S-units for some explicit
sets S). In all these situations, the dimension of sgn G is as large as possible, namely
dim(sgn G) = r1. However, as we will see in section 3, surjectivity is far from being
the only possibility.

In the present paper, we address the question 2 for a general number field, and
for two different groups G. The first is G = G, the group generated by the units
of K; the second is G = G5 the group generated by the pseudo-units. A unit is an
element x € K* that has valuation 0 at every prime; a pseudo-unit is an element that
has even valuation at every prime. The group of pseudo-units is useful to compute
explicitly unramified quadratic extensions of K, via Kummer Theory (see for example
[8]). Our main result is that the group G5 can not have too few different signatures.
More precisely:

Theorem 1. — If G is the group of pseudo-units of a number field K with signature
(r1,72), then the integer dim(sgn Gs) can only take its values in the interval

%1 < dim(sgnGs) < 1.

As noticed in [9], the group of all possible signatures of pseudo-units is linked to
(the elements of order 2 in) the ordinary and the narrow class group of K. These
groups will play a role in the proof of Theorem 1 given in section 2. Because of
this link, it would not be surprising that the groups sgn Gy and sgn G5 share more
properties with class groups. For example, in the same spirit as the heuristics of
Cohen and Lenstra [4] for the class groups of number fields, is there a natural density
of number fields of given signature (r1,72) and groups sgn Gy or sgn Gy ? What is
the average size of these groups ? An answer is given for the cubic case in [2].

Without going further in this direction, we still make the conjecture that our
interval is optimal in the following sense:
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Comngjecture 2 (weak form). — Consider a degree n > 2 and a signature (ry,7s2)
with 71 + 2ro = n. For each integer da such that 5 < dy < ri, there exists at least
one number field K of degree n and signature (r1,r2) such that dim(sgn G3) = ds.

Conjecture 3 (strong form). — Consider a degree n > 2 and a signature (r1,72)
with r1 + 2ro = n and 1 < ry. For each integer do and each integer dy satisfying the
inequalities
1
2

<dy <m
1 <d,

S d27

there exists at least one number field K of degree n and signature (r1,72) such that
dim(sgn G1) = dy and dim(sgn G5) = ds.

As suggested by the anonymous referee, the questions of this paper naturally extend
to the group G of S-units for a finite set S of places of K, including the places at
infinity. In that case, the map sgn should probably be extended to [, g K, /(K )?.
We leave this for future work.

pes

This paper is organized as follows. Section 1 contains the notation and the defi-
nitions that are necessary to precisely state the theorem and the conjectures. It also
contains some immediate results. The proof of Theorem 1 is given in section 2, and
the computations that support the conjectures are described in section 3.

1. Preliminaries

Let K/Q be a number field of degree n with r; real embeddings o1,...,0,,, and
ro pairs of conjugate nonreal embeddings, such that r1 4+ 2ry = n. We denote by Fs
the finite field with 2 elements and by s : R* — Fy the sign homomorphism where
s(x)=0if z > 0 and s(z) =1if x < 0.

Composing s with (o1,..., 0., ) gives the signature map sgn : K* — (F3)™, which
is a group homomorphism. It clearly has (K *)? in its kernel, hence we also have a sgn
homomorphism defined over K> /(K*)2. All the groups involved here have exponent
2, hence are vector spaces over Fo. In particular, we can use the notion of dimension
over [y, just denoted by dim.

We denote by Z(K) the group of fractional ideals of K and by ¢ the natural map
from K* to Z(K). The kernel of i is the group U(K) of units of K, and its cokernel
is the class group CI(K). This is summarized by the exact sequence

15 UK) = KX 5 T(K) = CI(K) — 1.

We define the group G as the quotient of U(K) by its squares:

G, YUK JU(K).
By Dirichlet’s Unit Theorem, U (K) is the product of a cylic group of even order and
a free group of rank r; + 79 — 1, hence G; is a vector space over Fy of dimension
r1 + 72. It is useful to see it as the subgroup of K*/(K*)? generated by the units.
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We also define the group Ga as the subgroup of K*/(K*)? generated by the
elements that have even valuations at all primes (pseudo-units). It can therefore be
defined as

Gy ker (i : KX /(K*)? = T(K)/T(K)?) .
Since units have zero (hence even) valuation at every prime, G is a subgroup of Gs.
For an abelian group C, we write C[2] for the subgroup of elements of order 2. The

link between G; and G is described by an exact sequence, the proof of which is left
to the reader:

Proposition 4. — The sequence
15 Gy — Gy % CUK) 2] — 1
is exact, where j(x) is defined by the class of the ideal I such that i(x) = I2.

From the previous remarks, and the fact that —1 € G, we immediately deduce
the following result.

Proposition 5. —
If 1y = 0, then dim(sgn G1) = dim(sgn G2) = 0.
If i1 > 1, then
1 < dim(sgnG;) < dim(sgn Ga) < 7.

In particular, if ri = 1, then dim(sgn G1) = dim(sgn Gs2) = 1.

We still need to introduce several classical groups. Let KT 4 er (sgn: K* — (Fg)™)
be the subgroup of totally positive elements of K*. Because sgn is surjective on K *,
we have dim(K>*/K™*) = ry. The kernel of i restricted to K is the group U(K)* of

totally positive units of K, and its cokernel is the narrow class group CI(K)*. This
is summarized by the exact sequence

15 UE)Y > KT 5 I(K) = Cl(K)t — 1.

2. Proof of the main result
Proposition 6. — We have
dim(sgn G2) = 1 — (dim(CU(K)*[2]) — dim(CI(K)[2])) .

Proof. — By Proposition 5, the statement is true if 1 = 0, that is if the field is
totally complex. We will therefore assume that r; > 0. This implies in particular
that the only roots of unity in K are +1. We need to define two more useful groups:

G Wer (5 KH/(K*) = T(K)/T(K)?)
G Yker(i: K+/(K+)? - I(K)/I(K)?)
We have ker (sgn : Go — (F3)™) = G, hence

(1) dim(sgn Gs) = dim Gy — dim G ;..
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The groups G and G’_ are related by the exact sequence
1 {1} = K*/Kt -G -Gy —1

where the middle arrow maps an element = to 2. By the Approximation Theorem,
we know that dim(K>*/K*) = ry, which gives the relation

(2) dimGy =dim G/, —ry + 1.

We have already seen that dim G; = 1 +72, and by the exact sequence of Proposition
4 we obtain

(3) dimGy =11 +1r9 + dlm(Cl(K)[?])
The corresponding exact sequence concerning the totally positive elements is

1> UE)T/(UK)T)? = G — CIK)T[2] — 1.
This gives dim G’ = dimU(K)*/(U(K)")? + dim(CI(K)™[2]). Since —1 ¢ U(K)™T
and U(K)? C U(K)", Dirichlet’s Unit Theorem asserts that U(K)" is a free sub-
module of U(K) of rank 7y + 75 — 1, hence dimU(K)*/(U(K)")? = ri +ry — 1,
and
(4) dim G’ =711 + 712 — 1+ dim(CIU(K)T[2]).

Combining the relations (1) to (4), we obtain the conclusion. O

Proof of Theorem 1. — As a consequence of the ’Spiegelungsatz’ of Leopoldt, it
is proved in [7, Th. 8.12] (see also [1]) that the difference dim(CI(K)"[2]) —
dim(CI(K)[2]) is bounded by 71 /2. Theorem 1 then follows from Proposition 6. [

3. Numerical evidence for the conjectures

I made some experiments on the optimality of Theorem 1 that led me to the
conjectures 2 and 3. All these computations were made using pari/gp ([10]).

For a finite abelian group C, with elementary divisors [cy, ..., cg], the dimension
over Fy of C[2] is just the number of even ¢;. In pari/gp, the corresponding function
is
dim2(C) = sum(i=1,length(C),C[i]%2==0)

Given an irreducible polynomial P defining a number field K, we use Proposition 6
to compute the value do = dim(sgn Gs). In pari/gp, the corresponding function is
{d2(p) =

bnf = bnfinit(P);

bnr = bnrinit(bnf,[1,vector(bnf.r1,i,1)]1);

bnf.rl - ( dim2(bnr.clgp.cyc) - dim2(bnf.clgp.cyc) )

}

An optimality result for Theorem 1 is formulated in Conjecture 2. As proved by

the explicit examples given below, this conjecture is true for small degrees.

Proposition 7. — Conjecture 2 is true for n < 10.
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n|r|ds Disc | field
212 11 1222 -3
2 5122 42—1
313 ]2 229 | 23+ 322 —z —2
3 49 |23+ 22 -2 —1
412 |1 —1323 |zt + 23 —322+ 2+ 1
2 275 |t + a3 — 22— 1
414 12 10512 |2 +4a3 —2? —dx+1
3 1125 | z* — 323 — 22 + 3z + 1
4 75 et +ad —322—x+1
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1

L

Disc

field

—32411
—4511

2+t 420 — 227 — 20 +1
b — a3 —222+1

638597
36497
14641

2+ 72t =203 — 82 42+ 2
2 =22t =323+ 522+ —1
2+t — 4% — 322+ 3z +1

231173
28037

2O+ —bxt —20° 4922 — 20— 7
2+ a®+22% -2 -3 —1

—2840383
—215811
—92779

28 —22° — 3T — 2% + 222 + 240 + 8
a8+ -2t +22% 422 -3 +1
a8+ a® -2t =32 — 24+ 220 +1

66547629
2415125
453789
300125

2% — 225 —102% + 1823 + 1822 — 22z + 1
28 4+ 625 + 32* — 1203 — 322 + 72 — 1
20 + 525 + 4% — 8% — 522 + 3z + 1

b 42 — Tzt — 23+ T2 20— 1

7280161
612233

27 =525 — 227 + 623 + 327 —zx— 1
2l —xb P-4t —ax—1

—189212591
—7211207
—2306599

27 + 625 +52° —102* — 823 + 522 + 3z — 1
a7 — a8 —62° + 224 4+ 923 — 3 — 1
27 =3z —zt 4+ 3+ 322+ —1

14698041649
174368473
34554953
20134393

27 + 828 + 8% — 1da® — 1123 + 722 + 32 — 1
7 — 628 + 725 + 92t — 112® — 522 + 3z + 1
—22% — 525 + 9zt + 523 — 822 +1
— 28 — 62° + 42t + 1023 — 422 — 42 + 1

—65641219
—4286875

— 27 — 520 + 525 + Tt — 62 — 327+ 2x + 1

1204367616
50375981
15243125

— 627 + 112°% + 22° —302% + 322 — 622 —dx + 1

— 628 —2® +112* + 2% — 622 + 1

— 527 + 628 4+ 325 — 152* +192% — 1122 + 4z — 1

—139132345032
—1216830647
—T74671875
—65106259

5£7
$7
1‘8
28 — 827 + 302% — 632° 4+ 78x* — 53z3 + 1322 + 4z — 1
378
338
1,8
8

— 427 + 152° — 212® + 523 + 1722 — 162 + 4
a8 4+ 627 + 728 —8a® — 1324 + 223 + 622 + 2 — 1
8 — 427 + 925 — 62 — 2% + 522 — 4z + 1
28 —dx” + 28 +92° — 2% — 1023 — 222 + 42 + 1

O O TUIO Ui Wk WINN RO OO R WWN O O Wik W PO Www N

20462483441920
372030717952
1635340493
309593125
282300416

28 + 1027 + 152% — 382% — 102% +322° — 622 —4x + 1
28 4+ 227 — 828 — 102° 4+ 162* + 1023 — 822 — 22 + 1

28 + 227 — 728 — 925 + 162* + 72® — 1022 + 1

28 + 527 + 228 — 162° — 8x* 4+ 1423 + 522 — 3¢ — 1

a8 — 227 — 720 + 122° + 8% — 142 + 42 — 1
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field

©

—2213524327

z° + 325 — 227 — 142% — 72® + 1527 + 152° — 3z — 1
w9—2m8+w7+x6—3z5+14+3$3—21:—1

132798878677

:cg71876r7+616+915712z47213+71272x71
ngra:g77z77616+16m5+11m4714x37612+4x+1
zg+2w87w772z671575a:4+w3+5:1:271

9 [7 —76411267973087 | x° + 625 — 8z7 — 22z° + 14x® + 2527 — 62° — 1022 + 1
—126511031459 | 2° — 32® — 427 + 132° 4+ 62° — 152* — 52% + 522 + 22 — 1
—2385869687 | z° + x® — 8z7 — 72% + 21x® 4 142* — 222 — 822 + 8z — 1
—1904081383 | z° + 2% — 627 — 82% 4+ 102® 4+ 192* — 22% — 1322 — 2z + 1
9 [9 104774245305921634708 | =7 + 4% — 1127 — 392% + 4325 + 10827 — 6323 — 10422 + 32z + 28
1370685981099672 | z° — 328 — 727 + 2125 + 112° — 372 — 23 + 1622 — 22 — 1
473335756973 | 2 4+ 228 — 927 — 172°% 4 202° + 30z* — 202® — 1422 + 92 — 1

1971879x7+416+26x572w4725m37932+7x+1
z° —+ 228 — 727 — 142° —+ 152° + 302 — 102°% — 1922 +2x+1

20 2% 4228 27 — b —2® — 42T 2T 2041
049 " 4242 —a? 34 —1

"
[}
[\v]

T I O UL IO ULk Wik W NN PO OO0 U U0tk WwN

xr
10 | 4 —1325850919936 | z1° — 3% — 2% + 72T —42Z + 1
—15000291739 | 210 4+ 2% 4+ 22% — 27 — 325 —52% — 52t — 22 + 22 422+ 1
—3120654523 | 210 — 22° 4+ 228 — 727 4+ 82% — 32° + 8z — 72 + 222 — 22 + 1
10 | 6 70125305540625 | =0 — 3zY — 102 + 2527 — 462° + 76z — 702> + 402” — 15z + 3
715520093041 | 2 — 2% — 42% + 1127 — 42% — 122° + 182* — 6% — 622 + 520 — 1
210 —+ 52° —+ 628 — 327 — 32° + 52° — 92% — 1325 + 522 +6x + 1
zm7w97w8+4w774w6+8w473$375w2+w+1
10 | 8 —3407454761534464 | 210 4+ 32% — 212% + 2727 — 1027 + 1
—18386732163379 | z'° — 62° + 72® + 1327 — 352° + 102® + 34z* — 262° — 2® + 5z — 1
—811053191559 | ' — 42° + 2% 4+ 1427 — 212% + 2% + 232* — 142% — 4% + 50— 1
—96433540579 | z'0 4+ z° — 102® — 1427 + 152°% + 202° — 102* — 52° + 322 — 3z + 1
—70952789611 | z'0 — 22° — 628 4+ 827 4 142® — 62® — 162 — 2 + 722 + 2 — 1
10 | 10 15176560115334013 | 20 — 27 — 652% + 652" + 15192° — 15192° — 1511327 + 151132°
+56167x% — 561672 — 29369
6 850657970718581 | x'0 + 11z° + 352°% 4+ 927 — 932% — 392° + 93z* + 92° — 3522 + 11z — 1
7 18782382666752 | x10 + 42° — 3z% — 2627 — 92° 4 48x° 4 252% — 282° — 1022 + 4z + 1
8 944409985381 | ' — 142% + 1527 + 312% — 39z° — 202* 4+ 292 + 22 — 6z + 1
9 572981288913 | 2 — 2% — 102® + 1027 4 3425 — 342° — 432* + 432°% + 1222 — 1220 + 1
10 443952558373 | 210 4+ 2% — 112® — 927 4 292° 4 162° — 262? — 102 + 922 + 22 — 1

In order to compute the value of d; = dim(sgn G1) with pari/gp, I use the following
function:

{d1(pP) =

bnf = bnfinit(P);

signs = apply(x->nfeltsign(bnf,x)~,concat(bnf.tul2],bnf.fu));

signs = matconcat(signs);

signF2 = apply(x->(1-x)/2,signs);

matrank (signF2*Mod(1,2))

Using this function, I could observe that it may happen that the lower bound %
is false if we just look at the signatures of the units, that is if we replace Gy by Gj.
Some examples are recorded in the next table.
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Disc | field

15529 | 23 — 192 — 21

21— 1922 + 64
xt — 2% — 2422 + 4x + 94

176400
247104

2 +5xt+ 423 — 327+ 8x + 1
25 — 6x* — 6723 + 28922 + 680x — 1141
2® 4+t —132% — 322 + 10z — 1

—2477131
1073025317443036
234799409

28 + 525 — 132% — 523 + 5522 — 63z + 21
28 —202* + 1922 — 2

—7110909351
566661029888

27 4220 —52° — 1227+ 22° + 1222 + 42 — 1
27+ 528 — 2625 + 122 + 2623 — 2222 + 4x + 1
27 + 2% — 2525 + 232* + 5023 — 3122 — 202 + 5

2132993477
—26480072251759
16944976450166760

[ R Y e Y e Rl A Y
fin

\]U\C}JGB»&O‘!U‘W%%C&:

g N o olotot o e aw S

The same computation led me to a proof of Conjecture 3 in small degree.

Proposition 8. — Conjecture 3 is true for n < 4.
Proof. —

ni|r|do|di Disc | field

212 1 |1 12 22 -3

212 1 136 | 22 — 34
2 5|2 +x—1

313 ]2 |1 15529 | 23 — 1922 — 21
2 229 | 23 + 322 —x —2

31313 |1 494209 | z® — 22 — 2342 + 729
2 1957 | 2% + 522 —x — 4
3 49 | 3 +22 -2 -1

412 11 |1 —1323 [ 2%+ 23 — 322 + 2 + 1

412 2 |1 —7975 | 2t — 2% + 327 — 122 — 16
2 275 |zt + 22— 22— 1

414 [2 |1 176400 | z* — 1922 + 64
2 10512 | 2t + 42 — 22 —4x + 1

414 [3 |1 6435072 | 2T — 82° — 3022 + 184z — 143
2 57600 | z* — 8z2 + 1
3 1125 | 2% — 323 — 22+ 3z + 1

414 14 11 134830694400 | 2% + 122% — 6222 — 628z + 1911
2 6964321 | z* — 32 — 4122 + 1122 + 179
3 56025 | 2 4+ 4z® — 322 — 92 4+ 6
4 75 | xt+ a2’ —322 —x+1
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