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Abstract

Although the solvability over the rationals of a quadratic equation of dimension 4 is easy
to test using local information, no efficient algorithm has been described yet for constructing a
solution. We describe here such an algorithm and prove its correctness. It uses many different
tools such as linear algebra over finite fields, the theory of class groups of binary quadratic
forms, and the reduction of indefinite unimodular quadratic forms. We extend this algorithm
to all the dimensions n > 5, by considering separately two cases, depending on the parity of n.
These algorithms can be used to find a totally isotropic subspace of maximal dimension.

Introduction

The well–known Theorem of Hasse–Minkowski ([7, Th. IV.8]) asserts that a homogeneous quadratic
equation Q(X1, . . . , Xn) = 0 over Q, has a nontrivial solution in Qn if and only if it has a nontrivial
solution everywhere locally. It is also known that the local solvability is automatically satisfied,
except at a finite number of places, namely over the reals, over Q2, and over Qp, for all prime
divisors p of the determinant of Q, see [7, Th. IV.6]. If n > 5, the solvability is even simpler
to test, since in this situation, Meyer’s Theorem (see [7, Cor IV.2]) asserts that the equation is
solvable over Q if and only if Q is indefinite.

If detQ = 0, a solution can be found by linear algebra, and we will never consider this case
any more. The theory of local symbols gives a very efficient way to decide the existence of local
solutions at a given place. As soon as the factorization of det Q is known, it gives therefore a very
efficient way to determine the existence of a nontrivial global solution (this is even more efficient
when n > 5 since in this case only the real signature has to be computed).

For many applications, it is not enough to know that a solution exists, and we really need
an algorithm to construct such a solution. The special case n = 3 is probably the most studied
one, and several efficient algorithms exist (see [6, §294–295], and more recently [5] and [8]). For
higher dimensions, very little has been done, and to our knowledge, no efficient algorithm has been
implemented nor described. The classical proof of the Hasse–Minkowski Theorem in the case n = 4
explicitely constructs a solution and runs as follows : using a standard diagonalization process,
we reduce the problem to an equation of the form a1X

2
1 + a2X

2
2 + a3X

2
3 + a4X

2
4 = 0 ; then,

using the Theorem of Dirichlet on primes in arithmetic progressions, it is proved that the binary
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quadratic forms a1X
2
1 + a2X

2
2 and −a3X

2
3 − a3X

2
3 represent a common prime number p ; these

representations can be found using the well–known case n = 3. It is possible to turn this proof
into an algorithm. However, it rapidly becomes inefficient, and a careful analysis of this algorithm
would be very difficult. This is essentially due to the use of the Theorem of Dirichlet, which is still
highly ineffective. Another drawback of this algorithm is that it requires the factorization of the
coefficients ai, which may be huge compared to det Q, and therefore impossible to factor in practice
(see [8, §4] for a similar discussion in the case n = 3).

The goal of this paper is to fill in this gap. We will give an algorithm that gives a solution in
the case n > 4. As we will see, using linear algebra and recursive application of the algorithm, we
are also able to find a totally isotropic subspace of maximal dimension. ******************* We
are able to prove that, for a fixed dimension n, the running time of the algorithm is polynomial in
the input. *******************

Our strategy is to generalize the algorithm of [8], written for the specific case n = 3, to the
higher dimensions n > 4. The general algorithm runs in three steps:

Step 1 – Factorization of detQ.
Step 2 – Minimization: using linear algebra and square roots modulo p, we are reduced to the

case of a unimodular quadratic form (detQ = ±1).
Step 3 – Reduction: using the reduction algorithm for indefinite quadratic forms given in [8],

we reduce the size of the coefficients until a very simple solution can be found.
However, contrary to the case n = 3, the minimization step can not in general be achieved

within a fixed dimension n > 4. As we will see, the solution of an equation in dimension n will
require to work in dimension greater than n (but at most n+3). In [2, §14.7] and [3], Cassels gives
a proof of the Hasse–Minkowski Theorem in the case n = 4, where he does not make use of the
Theorem of Dirichlet on primes in arithmetic progressions. His strategy consists of incrementing
the dimension by 2 and using the knowledge of the 2–Sylow of the class group, for a well–chosen
discriminant. We will follow this trick, and our strategy for the minimization of the determinant
of Q will be the following:

Step 2a – Remove as many prime factors as possible within dimension n.
Step 2b – Increase n by 1 to remove the square factors of detQ.
Step 2c – Increase again n by 2 to remove all the remaining factors of detQ.
In fact, after step 2a, det Q will contain square factors only if n is even. If n = 4, the prime

divisors of this square are precisely those at which our equation is not solvable. Therefore, if
the local solvability has been tested before calling this algorithm, there is no step 2b for n = 4,
otherwise, this step can serve as as a test for the local solvability. Hence, for n = 4, the minimization
is achieved in dimension 4 or 6. For higher dimensions, it is easy to write down examples for which
the minimization will be done in either dimension n or n + 2 if n is odd, and in either dimension
n, n + 1, n + 2, n + 3 if n is even.

This paper is divided as follows. In section 1, we investigate the case of a unimodular quadratic
form of an arbitrary dimension. In sections 2 and 3, we give the numerous lemmas usefull for the
minimization algorithm. In section 4, we consider a special case of the 4–dimensional equation. In
the following sections 5, 6, and 7, we consider separately the generic cases when the dimension n
is 4, odd and n > 5, and finally even and n > 6. The final two sections tackle the question of the
performance of the algorithm and its possible improvements.

2



Notation:
We will always identify a quadratic form Q and its Gram matrix in a given basis. For a

symmetric matrix Q ∈Mn(Q) and X ∈ Qn, we have Q(X) = XtQX. More specifically for binary

quadratic forms, we use the notation (a, b, c) for the quadratic form aX2 + bXY + cY 2 =
(

a b
2

b
2 c

)
.

If Q and R are two quadratic forms over two distinct spaces, we write Q⊕ R for their orthogonal
sum. We also use the notation Q⊕n for Q⊕Q⊕ · · · ⊕Q (n times). For a given quadratic form Q
over a space E, and a subspace F ⊂ E, F⊥ is the orthogonal complement of F in E for Q.

If a and b are p–adic numbers, (a, b)p is the usual Hilbert symbol, and if Q ∈ Mn(Qp) is a
quadratic form over the p–adic numbers, εp(Q) is its local Witt invariant (also called the Hasse–
Minkowski invariant and denoted by cp(Q) in [2], or the ε invariant in [7]). For a real quadratic
form Q, sign(Q) = (r, s) is its signature (for example, sign(Q) = (n, 0) means that Q is positive
definite).

1 Solution in the unimodular case

In this part, we want to solve Q(x) = 0, where Q ∈Mn(Z) is a symmetric matrix with determinant
±1 and dimension n > 2. Using an easy induction, we can also obtain a totally isotropic subspace
of maximal dimension.

Algorithm 1 (Solution in the unimodular case) Let Q ∈Mn(Z) be a symmetric matrix with
determinant ∆ = ±1 and signature (r, s). This algorithm finds a nontrivial solution of Q(X) = 0.

1- If r = 0 or s = 0, return ∅.
2- Apply the reduction algorithm of [8] to Q. If a solution X has been found,

return X.
3- Compute the Gram-Schmidt orthogonal basis (b∗k)16k6n associated to Q.
4- For k = 1, . . . , n, compute dk = det(Qi,j)16i6k,16j6k and d0 = 1.
5- If di

di−1
= − dj

dj−1
, for some i 6= j, return b∗i + b∗j.

6- Let l > 1 be the smallest index such that dl
dl−1

, . . . ,
dl+4

dl+3
contains at least a

sign change, and E be the subspace generated by (b∗k)l6k6l+4.
7- Find a nontrivial solution X ∈ E of Q(X) = 0 using Algorithm 6 and return

X.

Proof: In [8] we saw that the reduction algorithm builds a solution exactly when dk = 0 for some
k, and that the Gram–Schmidt basis exists if and only if the dk are all nonzero. This proves that
Step 3 is correct. Steps 4 and 5 are clear, since we have Q(b∗k) = dk

dk−1
. In [10], it was proved that,

if n 6 9, a solution of Q(X) = 0 must be found at Step 5. This proves the validity of the algorithm
for n 6 9.

Assume now that we arrive at Step 6. We have n > 10. Among the dl
dl−1

exactly r of them are
positive, and s are negative. Since r and s are both nonzero, the quantity l of Step 6 is well defined.
The restriction of Q to the 5–dimensional subspace E is indefinite, and by Meyer’s Theorem ([7,
§IV.3.2]), we know that it represents 0. The validity of Step 7 is proved if we prove the validity of
Algorithm 6. As we will see, Algorithm 6 requires Algorithm 1, so it seems unsolvable. In fact, we
only need Algorithm 6 in dimension n = 5, and in this case Algorithm 6 only requires Algorithm 1
in dimension n + 2 = 7, which we already know to be valid. �
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After billions of random experiments up to dimension 25, I have never encountered the slightest
need to go further than Step 5 in this algorithm. However, it remains possible, at least in principle,
to find a counter–example. If we have such a Q, we see that Step 7 requires the factorization of
det Q|E . Since the basis is orthogonal, this determinant is the product Q(b∗l )× · · · ×Q(b∗l+4), and
the factorization of det Q|E is given by the factorization of the integers dl−1, . . . , dl+4, which are
bounded in [10] by

| dk |6 γk(n−k)/2 6 γn2/8

for a real constant γ close to 4
3 . For n 6 25, it gives | dk |6 1010 and for n 6 50, it gives | dk |6 1040.

By [7, Th V.3] we know that the indefinite unimodular quadratic form Q represents 0. Algorithm
1 can be used to solve this problem. By induction, we can therefore find a basis change, such that
in the new basis (bi), Q has the shape Q = H⊕m ⊕D, where D is a (positive or negative) definite

quadratic form, m = min(r, s), and H is a hyperbolic plane, that is
(

0 1
1 0

)
or

(
0 1
1 1

)
. We have

thus found a totally isotropic subspace of maximal dimension m, and basis b1, b3,. . . ,b2m−1. The
corresponding recursive algorithm is the following:

Algorithm 2 (maximal totally isotropic subspace) Let Q ∈ Mn(Z) be a symmetric matrix
with determinant ∆ = ±1 and signature (r, s). This algorithm finds a basis of Zn such that in this
basis Q has the shape Q = H⊕m⊕D, where m = min(r, s) and D is a (positive or negative) definite
quadratic form of dimension n− 2m.

1- If r = 0 or s = 0 or n 6 1, return D = Q.
2- Using Algorithm 1, determine a solution of Xt

1QX1 = 0. Choose a new basis
X1, . . . , Xn starting with X1.

3- Apply standard linear algebra over Z and find a new basis for which Q has

the form Q = H ⊕Q′, where H =
(

0 1
1 ε

)
with ε = 0 or 1. This Q′ has dimension n −

2, determinant equal to det Q′ = −det Q, and signature (r − 1, s− 1).
4- Return H ⊕R, where R is the result of Algorithm 2 applied to Q′.

2 Totally isotropic subspaces over Fp

In this section, we recall some very classical results about quadratic forms over the finite field Fp.
Nevertheless, we write them here to give an idea of the corresponding algorithms. We use here the
language of quadratic spaces (see [2] or [7]).

Lemma 1 Let p be a prime number, and Q ∈M3(Fp) a symmetric matrix with nonzero determi-
nant. Then Q represents 0 nontrivially.

Proof: This result is well known (see for example [7, prop IV.4]). From a computational point of
view, we can fix two variables at random, and solve for the third one. It corresponds to a quadratic
equation with a random discriminant. This discriminant is a square with a probability close to
1/2. The corresponding probabilistic algorithm is extremely efficient. Another algorithm has been
described by Van de Woestijne ([11]), which is deterministic, but sometimes less efficient. �
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Lemma 2 Let n > 1 be an integer, and Q ∈ Mn(Fp) a symmetric matrix with nonzero determi-
nant. Set

m =


(n− 1)/2 if n is odd
n/2 if n is even and (−1)n/2 det Q is a square
n/2− 1 otherwise

There is a subspace of dimension m, which is totally isotropic for Q.

Proof: We will prove that the full space can be decomposed into the orthogonal sum of m hyperbolic
planes and another space of dimension n − 2m. The proof is done by induction on n. If n = 1 or
n = 2, the result is clear (and a square root computation may be necessary to exhibit explicitly
the hyperbolic plane). Assume now that it is true for all dimensions up to n− 1 > 2, and consider
a quadratic form of Qn of dimension n and nonzero determinant. By Lemma 1, Qn is isotropic,
and using standard linear algebra over Fp, we can write Qn = H ⊕ Qn−2. The result follows by
induction, since we have det Qn−2 = −det Qn, and dim Qn−2 = n− 2. �

Lemma 3 With the same notation as in Lemma 2, every subspace, which is totally isotropic for
Q, is contained in another such subspace of dimension m.

Proof: Let E be a subspace of dimension e, totally isotropic for Qn. Using standard linear algebra,
we can find another subspace E′ of dimension e, such that E⊕E′ = H⊕e, where H is a hyperbolic
plane. Now, the quadratic space is Fn

p = (E⊕E′)⊕(E⊕E′)⊥, where the quadratic space (E⊕E′)⊥

has dimension n − 2e and determinant (−1)d det Q. Applying Lemma 2 to (E ⊕ E′)⊥, we get the
result. �
Remark: In order to find a totally isotropic subspace of dimension m, we see that we have to
compute m square roots modulo p. In [11], there is a way to find it with at most one square root.
The integer m itself can be computed with no effort if n is odd, and requires only the computation
of the Legendre symbol

(
(−1)n/2 det Q

p

)
if n is even.

3 Minimization

The goal of this part is to minimize the determinant of Q; that is, to apply a linear transformation
to Q over Q, such that the coefficients of Q remain integral, but the determinant of Q becomes as
small as possible. For this purpose, we work successively with each prime divisor p of detQ, and
use the classical algorithms of linear algebra and square root in Fp.

Let Q ∈ Mn(Z) be a symmetric matrix with determinant ∆ 6= 0. Choose a prime p | ∆ and
let v be the valuation of ∆ at p. We use the notation Q for the reduction of Q modulo p and
d = dimFp ker Q. We have 1 6 d 6 n and d 6 v.

After a linear transformation, and without loss of generality, we can assume that the first d
columns of Q are divisible by p. We also consider Q̃ = (1

pQi,j)16i,j6d. With all these conventions,
Q has the form

Q =
(

pQ̃ p∗
p∗ U

)
where U ∈Mn−d(Z) is invertible modulo p.

Lemma 4 If d = n, then Q′ = 1
pQ ∈Mn(Z) and det Q′ = p−n∆.
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Lemma 5 If d < v, then there exists an integer d̃, 1 6 d̃ 6 d, and a matrix M ∈ Mn(Q) such
that Q′ = M tQM ∈Mn(Z) with det Q′ = p−2d̃∆.

Proof: The condition d < v implies that the matrix Q̃ also has a nontrivial kernel modulo p. Let d̃
be its dimension, 1 6 d̃ 6 d. After a basis change, we get that the first d̃ columns of Q̃ are divisible
by p. We can extend the basis change to Q, and we see that the block (Qi,j)16i,j6d̃ extracted from
Q is divisible by p2. The matrix M can be chosen to be diagonal, with the first d̃ coefficients equal
to 1

p , and the last coefficients equal to 1. �

Lemma 6 If n is odd and if d = v is even and d > 2, then there exists a matrix M ∈Mn(Q) such
that Q′ = 1

pM tQM ∈Mn(Z), Q′ /∈Mn(pZ), with det Q′ = pn−2d∆.

Proof: The matrix M can be chosen to be diagonal, with the first d coefficients equal to 1 and the

last coefficients equal to p. We obtain Q′ =
(

Q̃ p∗
p∗ pU

)
. �

With an obvious notation, we have, in Lemma 6, d(Q′) = v(Q′) = n− d is odd.

Lemma 7 If d = v and d > 3, then there exists a matrix M ∈ Mn(Q) such that Q′ = M tQM ∈
Mn(Z) with det Q′ = p−2∆.

Proof: By Lemma 1, we can find a new basis, for which the coefficient Q̃1,1 is divisible by p. We
extend this linear transformation to Q, and see that the first line and column of Q are divisible
by p, and that the coefficients Q1,1 is divisible by p2. We can therefore choose for M the diagonal
matrix having 1

p as the first coefficient, and 1 as the other coefficients. �

Lemma 8 If d = v = 2 and if −det Q̃ is a square modulo p, then there exists a matrix M ∈Mn(Q)
such that Q′ = M tQM ∈Mn(Z) with det Q′ = p−v∆.

Proof: Since −det Q̃ is a square modulo p, Q̃ represents an integer divisible by p. The end of the
proof is similar to the proof of Lemma 7. �

For the remaining cases, we make a supplementary transformation. We denote by m the max-
imal dimension of a totally isotropic subspace for U modulo p. After a new basis change, we get
that the block (Ui,j)16i,j6m is divisible by p (we use Lemma 2, and the underlying algorithm). It
is worthwhile to note that this decomposition is necessary only when the conditions of the next
lemma are fulfilled. The corresponding test can be done as soon as we know the values of d,v, and
m (see Lemma 2).

Lemma 9 Assume that d = v = 1 and n is odd, or that d = v = 2 and n is even.
If m = (n − d)/2, then there exists a matrix M ∈ Mn(Q) such that Q′ = 1

pM tQM ∈ Mn(Z)
with det Q′ = p−v∆.

Proof: After the transformation already performed on Q, we see that it is enough to consider a
diagonal matrix M having its first d + m coefficients equal to 1, and the other equal to p. �

We can now use all theses lemmas, and deduce an algorithm of minimization:
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Algorithm 3 (Minimization) Consider a symmetric matrix Q ∈Mn(Z) with determinant ∆ 6=
0. This algorithm applies linear transformations on Q and minimizes its determinant.

For each prime p | ∆, apply the following transformations:
1- Apply Lemma 4 and Lemma 5 as long as possible.
2- If n is odd, apply Lemma 6.
3- If d = v > 3, apply Lemma 7.
4- If n is even and d = v = 2, apply Lemma 8.
5- Compute m with the formula given in Lemma 2. If the condition of Lemma 9

is fulfilled apply Lemma 9.
6- Return the new matrix Q ∈Mn(Z) and the matrix M ∈Mn(Q) of the correspond-

ing basis change.

Remark: We remark that step 1 and step 2 of this algorithm use only linear algebra over Fp,
and that step 3 to step 5 require taking square roots in Fp. In consideration for computational
efficiency, it may be interesting to reduce the size of the linear transformations M after some steps,
for example using LLL.

Proposition 10 The output of Algorithm 3 is a matrix Q such that
– if n is odd, then det Q is odd, and for all prime p | det Q, we have d = v = 1 and m = (n−3)/2.
– if n is even, then for all prime p | det Q, we have d = v 6 2. If p = 2, then d = v 6 1. If

d = v = 2, then m = (n− 4)/2.
– if n = 3 and p > 2, then the condition v = 1 is equivalent to the local unsolvability of

XtQX = 0 over Qp.
– if n = 4 and p > 2, then the condition v = 2 is equivalent to the local unsolvability of

XtQX = 0 over Qp.

Proof: The first two points are a reformulation of Lemma 4 to Lemma 9, and the remark that every
integer is a square modulo 2. The next points are the famous criteria of solvability of the quadratic
equations, see for example [7, Th. IV.6]. �
Remark: This minimization algorithm can be used as a solvability test at any prime p 6= 2 for the
dimensions 3 and 4. At p = 2, a specific test is necessary.

4 Solution in the general case when n = 3, or in a specific case
when n = 4

The algorithm described in [8], for the solution of quadratic equations in dimension 3, can imme-
diately be generalized in dimension 4, but only in the specific case when the determinant is of the
form det Q0 = ±δ2. The algorithm is the following:

Algorithm 4 Given a symmetric matrix Q0 with determinant ∆0 6= 0, which is either in M3(Z),
or in M4(Z) such that ∆0 = ±δ2 6= 0. Either this algorithm proves the unsolvability of XtQ0X = 0,
or it returns a solution.

1- Compute the signature (r, s) of Q0. If r = 0 or s = 0, then there is no real
solution, and stop.

2- Minimize Q0 using Algorithm 3. Let Q be the new matrix, and ∆ its determi-
nant.
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3- If ∆ has a prime divisor p, then there is no p-adic solution, and stop.
4- Apply Algorithm 2 and find a solution for Q. Deduce a solution for Q0.

Remark: The validity of this algorithm results directly from sections 1 and 3. Here, we make the
observation that, in both dimensions 3 and 4, the local solvability at 2 needs not to be tested after
step 3. Indeed, an indefinite integral quadratic form of determinant ±1 always represents 0.
Remark: It is not difficult to see that this algorithm produces a totally isotropic subspace of
maximal dimension ( = min(r, s)).

5 Solution in the generic case when n = 4

We now describe an algorithm for solving quadratic equations in dimension 4. This algorithm
originates in the mixture of the algorithm given in [8] for the dimension 3, and the theoretical proof
given by Cassels in [2, §14.7] and [3], for the Theorem of Hasse in dimension 4. Cassels gives a new
proof of this theorem, which avoids using Dirichlet’s Theorem on primes in arithmetic progressions
that caused all classical proofs to be ineffective (see for example [2, §6.5] or [7, ch. IV,Th. 8]). The
trick of Cassels consists of increasing the dimension by 2 and using the explicit knowledge of the
2–class group of some well chosen discriminant.

Algorithm 5 (Solution in dimension 4) Given a symmetric matrix Q0 ∈ M4(Z) with deter-
minant ∆0 6= 0, with |∆0| non–square. We assume that the factorization of ∆0 is known. Either
this algorithm proves the unsolvability of XtQ0X = 0, or it returns a solution.

1- Compute the signature (r, s) of Q0. If r = 0 or s = 0, then there is no real
solution, and stop. If r < s, change Q0 into −Q0, and exchange r and s.

2- Minimize Q0 with Algorithm 3. Let Q be the new matrix, and ∆ its determinant.
3- If ∆ has a square divisor p2, for a prime p, then there is no p-adic solution,

stop the algorithm.
4- Set δ = 4∆. Compute the local Witt invariants εp(Q) of Q (for p | δ).
5- If ∆ ≡ 1 mod 8 and ε2(Q) = +1, then there is no 2-adic solution, stop the

algorithm.
6- Compute a set of generators g1,...gr of the 2-Sylow subgroup Cl2(δ) of the

group Cl(δ) of classes of primitive quadratic forms with discriminant δ, using the
algorithm given in [1].

7- Compute the Witt invariants εp(gi) of the gi (for p | δ). Apply linear algebra
over F2 and find a product g =

∏
gαi
i with invariants either εp(g) = εp(Q)(−1,−δ)p (case

1), or εp(g) = εp(Q)(−1,−δ)p(2, δ)p (case 2).

8- Write g = (a, 2b, c). In case 1, set Q′
2 =

(
a b
b c

)
. In case 2, replace g by one

of the three forms (a, 2b, c), (c,−2b, a) or (a + 2b + c, 2b + 2c, c) whose first coefficient

is even. Write g = (2a′, 2b, c), and set Q′
2 =

(
a′ b
b 2c

)
.

9- Set Q6 = Q⊕−Q′
2. Let E be the subspace Q4 of Q6 corresponding to this de-

composition into orthogonal subspaces. Minimize Q6, using Algorithm 3 (only step
4 of this algorithm is necessary). Let Q′

6 be this new minimized matrix, with
determinant −1.
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10- Apply Algorithm 2 and find a subspace F of dimension 3, totally isotropic
for Q′

6.
11- Determine a nonzero vector in the intersection E∩F. This vector is a so-

lution for Q. Deduce a solution for Q0.

Remark: Since ∆0 is not a square, there is no totally isotropic subspace of dimension 2, and we
deduce that this algorithm finds a totally isotropic subspace of maximal dimension.

The end of this section will be devoted to the step by step proof of the validity of this algorithm.
Steps 1 – 3 : these steps have already been justified by Proposition 10.
Step 4: If we arrive at this step, we know that detQ = ∆ is a squarefree integer. The compu-

tation of the local Witt invariants εp(Q) can easily be done after diagonalizing Q and computing a
few Hilbert symbols (see [7, §IV.2.1]).

In order to justify the next steps, we need a proposition:

Proposition 11 Let Q ∈M4(Z) be a symmetric matrix, with det Q = ∆ 6= 0, and ∆ squarefree.
1. Let p > 2 be a prime number. Then XtQX = 0 has a nontrivial solution in Q4

p.
2. The equation XtQX = 0 has only the trivial solution in Q4

2 if and only if ∆ ≡ 1 mod 8 and
ε2(Q) = +1.

Proof: We have to distinguish between the cases p | ∆ and p - ∆. But in both cases, it is a direct
application of [7, Ch. IV, Th. 6]. �

Step 5 : We know from the last proposition, that, if the algorithm does not stop after this test,
the equation XtQX = 0 has nontrivial local solutions everywhere, and hence by the Theorem of
Hasse also a nontrivial rational solution.

Step 6 : The multiplication by 4 forces δ to be a discriminant, fundamental or not. It is
certainly much faster to compute directly the 2–part of the class group of discriminant δ using the
algorithm given in [1], which runs in polynomial time, rather than to compute the full class group,
in sub–exponential time using the algorithms described in [4, §5.4], and extract its 2–part.

Step 7 : We have to prove the existence of a quadratic form having the given invariants.

Proposition 12 Consider a symmetric matrix Q with det Q = ∆ 6= 0, ∆ squarefree, and signature
(r, s). Assume that XtQX = 0 has a nontrivial solution Q4. Then there exists a U ∈ SL4(Z) such
that

U tQU =
(

H 0
0 Q2

)
where H is a hyperbolic plane of the form

(
0 1
1 α

)
, α ∈ {0, 1}. We have

det Q2 = −∆
sign(Q2) = (r − 1, s− 1)

εp(Q2) = εp(Q)(−1,−∆)p

Proof: Let X1 be a nontrivial solution in Q4. Without loss of generality, we can assume that the
coefficients of X1 are integers, not all divisible by a common prime. Let U1 ∈ SL4(Z) be a matrix
having X1 as its first column, and define Q′ = U t

1QU1. Then we have Q′
1,1 = 0. Let V2 ∈ SL3(Z)
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be a matrix, such that (Q′
1,2, Q

′
1,3, Q

′
1,4)V2 = (a, 0, 0) (V2 is given by the Hermite Normal Form

algorithm). Set U2 =
(

1 0
0 V2

)
. We have then

Q′′ = U t
2Q

′U2 =


0 a 0 0
a b2 b3 b4

0 b3 ∗ ∗
0 b4 ∗ ∗

 .

Since the determinant of Q is squarefree, we have a2 = 1. After a possible scaling of the second
and third column of U2 by −1, we get a = 1. Define

U3 =


1 −[b2/2] −b3 −b4

0 1 0 0
0 0 1 0
0 0 0 1

 .

We see that U = U1U2U3 satisfies the conclusion of the proposition. The determination of the
invariants of Q2, from those of Q and H, is an easy exercise. �

At this step, we do not have a solution of XtQX = 0, and we do not know Q2. But the
existence of such a solution has been proved, and this implies the existence of Q2. Steps 6 to 8 are
building a binary quadratic form Q′

2 having exactly the same invariants as the unknown Q2. We
note here that the choice of the sign, made at step 1, forces the signature of Q2 to be either (1, 1),

or (2, 0), and that Q2 can not be negative definite. We can write Q2 in the form Q2 =
(

a b
b c

)
with det Q2 = −∆, or equivalently Q2 = aX2 +2bXY + cY 2 with Disc Q2 = 4∆. The problem now
comes from the possibility of Q2 to be imprimitive.

If ∆ 6≡ 1 mod 4, we see that Disc Q2 = 4∆ = δ is a fundamental discriminant. In this case, Q2

is a primitive quadratic form, and the class group Cl(δ) must contain a form equivalent to Q2. We
remark further, that in Cl(δ), the forms having an odd order have trivial invariants. This remark
shows that Q′

2 can be built inside the 2–Sylow subgroup Cl2(δ) of Cl(δ).
If ∆ ≡ 1 mod 4, Disc Q2 = δ is not a fundamental discriminant any more. If Q2 is primitive,

with discriminant δ, then case 1 will succeed in finding a form with the correct invariants. If Q2

is not primitive, it is of the form Q2 = 2R, where R is primitive of discriminant 1
4δ, and with

invariants εp(R) = εp(Q2)(2, δ)p. Write R = (a, b, c). We have to prove that R is equivalent to
another form with its first coefficients a odd. Indeed, the form R is equivalent to all the three forms
(a, b, c), (c,−b, a), and (a + b + c, b + 2c, c), and since b2 − 4ac = δ is odd, at least one among the
three integers a, c, and a + b + c is odd. We can therefore assume that a is odd, in which case the
form (a, 2b, 4c) is primitive if discriminant δ, and has exactly the invariants given by the formulas
given in case 2 of step 7.

Step 8 : The discriminant of g is 4δ, hence is even. This proves that g is of the form (a, 2b, c), and
that Q′

2 has integral coefficients. In case 1, Q′
2 has the same discriminant and the same invariants

as the matrix Q2 of Proposition 12. In case 2, it is more subtle. By the same arguments as in
case 1, we prove that 2g has the same local invariants as Q2, but its discriminant is 4 times larger.
We have g = (2a′, 2b, c), and 2g = (4a′, 4b, 2c). The form (a′, 2b, 2c) is equivalent over Q to 2g,
by a transformation matrix of determinant 1

2 . It has thus the same local invariants as 2g, and its
discriminant is divided by 4. This proves that the form Q′

2 has exactly the same invariants as Q2.
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Step 9 : Everything is proved in the following proposition:

Proposition 13 Let Q′
2 ∈ M2(Z) be a symmetric matrix, such that det Q′

2 = −∆, sign(Q′
2) =

(r − 1, s− 1) and εp(Q′
2) = εp(Q)(−1,−∆)p for all prime p | 2∆. Consider Q6 = Q⊕−Q′

2.
We have det Q6 = −∆2 and sign(Q6) = (3, 3).
Furthermore, there exists an M ∈M6(Q), such that M tQ6M = Q′

6 ∈M6(Z) with det Q′
6 = −1.

Proof: The invariants of Q6 are easily checked. We have to prove that Q6 can be minimized by
Lemma 8 for each prime p | ∆.

Consider a prime p | ∆. Let H and Q2 be given by Proposition 12. Since ∆ is squarefree, we
have dimFp ker(Q2) = 1 = dimFp ker(Q′

2), and dimFp ker(Q6) = 2. In a well chosen basis, Q2 is of

the form Q2 =
(

pa pb
pb c

)
, as well as Q′

2 =
(

pa′ pb′

pb′ c′

)
, where a and a′ are coprime to p. Hence,

after a unimodular change of basis, we see that Q6 is equivalent to a new matrix of the formH 0 0
0 Q2 0
0 0 −Q′

2


and, with the notation of part 3, we have Q̃6 =

(
a 0
0 −a′

)
. In particular, −det Q̃6 = aa′. By

assumption, we have εp(Q′
2) = εp(Q)(−1,−∆)p, and by Proposition 12, the Witt invariants εp(Q2)

and εp(Q′
2) are equal. This implies that the Hilbert symbols (pa,−∆)p and (pa′,−∆)p are equal.

We deduce from this, that (aa′,−∆)p = +1, where the product aa′ is coprime to p. If p = 2, then
aa′ = 1 mod 2 is a square modulo 2. If p > 2, then +1 = (aa′,−∆)p = (aa′, p)p, hence aa′ is a
square modulo p.

All this proves that we can minimize Q6 with Lemma 8 for each prime p | ∆, and proves the
proposition. �

Steps 10–11 : We have proved that after minimization, the new determinant of Q6 is −1 and
that its signature is (3, 3). Using Algorithm 2, we obtain a totally isotropic subspace F of dimension
3. To conclude, it remains only to see that a solution for Q is given by a solution of Q⊕−Q′

2 having
0 in its last two coordinates, that is lying in a 4–dimensional subspace E. Since the subspaces E
and F have an intersection of dimension at least 4 + 3 − 6 = 1, we are certain to get at least one
nontrivial solution for Q within step 11.

6 Solution in odd dimension n > 5

The algorithm given now for solving quadratic equations in odd dimensions n > 5 is very similar to
the algorithm 5 for the dimension 4. For these high dimensions, the test of the signature is the only
test for the solvability of the equation. Since the dimension is odd, the minimization algorithm
3 always leads to a squarefree determinant. Afterwards, the reduction is also done in dimension
n + 2, using a similar construction of a binary quadratic form with given local invariants.

Algorithm 6 (Solution in odd dimension n > 5) Given an odd dimension n > 5, and a sym-
metric matrix Q0 ∈ Mn(Z) with determinant ∆0 6= 0. Assume that the factorization of ∆0 is
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known. This algorithm returns a totally isotropic subspace of maximal dimension (possibly the null
space).

1- Compute the signature (r, s) of Q0. If r = 0 or s = 0, then there is no real
solution: return {0}. If r < s, change Q0 into −Q0, and exchange r and s.

2- For each prime p | ∆0, minimize Q0 using Algorithm 3. Let Q be be the mini-
mized matrix, and ∆ its determinant.

3- If ∆ = ±1, apply Algorithm 2, and find a subspace of dimension s, totally
isotropic for Q. Deduce a totally isotropic subspace for Q0 with the same dimen-
sion, and return it.

4- Set δ = −8|∆|, and compute generators g1,...gr of the 2-Sylow subgroup Cl2(δ)
of the class group Cl(δ) using the algorithm given in [1].

5- Compute the local Witt invariants εp(gi) of the gi (for p | ∆). Use linear al-
gebra over F2 and find a product g =

∏
gαi
i with invariants

εp(g) = −((−1)(n−1)/2+s × 2, p)p

for all p | ∆.

6- Write g = (a, 2b, c), and set Q′
2 =

(
a b
b c

)
.

7- Define Qn+2 = Q ⊕ −Q′
2. Let E be the subspace Qn of Qn+2 corresponding to

this decomposition into orthogonal subspaces. Minimize Qn+2, using Algorithm 3
(only step 4 of this algorithm is necessary for p | ∆, p > 2, and step 5 for p =
2). Let Q′

n+2 be this new minimized matrix, with determinant ±1.
8- Apply Algorithm 2 and find a subspace F of dimension m = min(r, s + 2) > 3 to-

tally isotropic for Q′
n+2.

9- Determine the intersection G = E ∩F, of dimension M = m− 2 > 1, and deduce
a subspace of dimension M, totally isotropic for Q0.

We have to prove this algorithm, step by step.
Step 1: After step 1, we have s < r (because s 6 r and n = r + s is odd).
Step 2: By Proposition 10, we know, that after minimization, ∆ is an odd squarefree integer, and

that for all prime p | ∆, Q is such that (−1)m+1 ∆
Q1,1

is not a square modulo p, where m = (n−3)/2
and Q1,1 = XtQX, where the kernel of Q modulo p is generated by X modulo p.

Step 3: This step is described in part 1. We have s = min(r, s) because of the choice that we
made for the sign at step 1. The dimension of the totally isotropic subspace found at this step is
clearly maximal.

Step 4: Since ∆ is odd and squarefree, δ = −8|∆| is a fundamental discriminant, and the
quadratic forms in Cl2(δ) are positive definite.

Step 5: Here, we build a new positive definite quadratic form. Its real Witt invariant is +1.
Since ∆ is odd, we will not consider any Witt invariant at 2: indeed, this invariant will be fixed
by the value of the Witt invariants at the other primes, and the product formula. We now have to
prove the existence of a form with discriminant δ having the given invariants. As already seen, it
is enough to consider the 2–class group Cl2(δ). The existence is proved be the proposition:

Proposition 14 Let ∆ be an odd integer, and δ = −8|∆|.
For each prime p | ∆, choose any value εp ∈ {+1,−1}.
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There exists a positive definite quadratic form g in Cl2(δ), such that its Witt invariants are

ε∞(g) = +1
εp(g) = εp for p | ∆
εp(g) = +1 for p - ∆, p > 2

Proof: By the Theorem of Gauss (see [2, §14.5]), such a form exists if and only if these invariants
satisfy the product formula and are such that, there exists everywhere locally an integral quadratic
form with discriminant δ and having the corresponding Witt invariant. Since the local invariant
ε2(g) is not fixed by the conditions of the proposition, we can define ε2 as the product of the other
εp, and the product formula is automatically satisfied.

It now remains to prove the existence, everywhere locally, of an integral quadratic form with
discriminant δ and Witt invariant εp.

If εp = +1, the form X2 − δ
4Y 2 is suitable. This is, for example, the case for the real place (it

is positive definite), as well as for all p - 2∆.
Consider now a prime p | ∆, such that εp = −1. We have p 6= 2. Let e ∈ Zp, e 6∈ pZp, be

such that e is not a p–adic square. The form eX2 − δ
4eY

2 is integral, with discriminant δ and Witt
invariant εp = (e, δ)p = −1.

Consider the last case p = 2. The form X2 − δ
4Y 2 is suitable if ε2 = +1. If |∆| ≡ 1 mod 4,

then the form −X2 + δ
4Y 2 has discriminant δ and Witt invariant ε2 = (−1, δ)2 = −1. If |∆| ≡ −1

mod 4, then the form 3X2 + δ
12Y 2 has discriminant δ and Witt invariant ε2 = (3, δ)2 = −1. �

Remark: The existence of a form with the same Witt invariants is not guaranteed among the
forms of discriminant −|∆| or −4|∆|. Indeed, if |∆| ≡ −1 mod 8, we can see that any form of
discriminant δ = −|∆| or −4|∆| has its Witt invariant ε2 = +1, and there are choices of the other
εp which do not satisfy the product formula.

Step 6: Since δ is even, g is of the form (a, 2b, c), which implies that Q′
2 ∈ M2(Z) has a

determinant equal to detQ′
2 = 2|∆|.

Step 7: Let us show that the choice of the invariants of Q′
2 allow a complete minimization of

Qn+2.

Proposition 15 Let n > 5 be an odd dimension, and Q ∈ Mn(Z) be a symmetric matrix with
an odd squarefree determinant ∆. Let (r, s) be its signature. Assume that for all prime p | ∆, Q
satisfies the conclusion of Proposition 10.

Let Q′
2 ∈M2(Z) be a symmetric matrix, such that det Q′

2 = 2|∆|, εp(Q′
2) = −((−1)(n−1)/2+s ×

2, p)p for all prime p | ∆.
Consider Qn+2 = Q⊕−Q′

2.
There exists an M ∈Mn+2(Q) such that 1

2M tQn+2M = Q′
n+2 ∈M4(Z) with det Q′

n+2 = ±1.

Proof: We have |det Qn+2| = 2|∆|2. Since n + 2 is odd and v2(detQn+2) = 1, we can certainly
minimize Qn+2 at 2 using Lemma 2 and Lemma 9. We shall show that the minimization of
Qn+2 at a prime p | ∆ is possible using Lemma 8. We use the notation of this lemma. Since
vp(detQ) = 1 = vp(det Q′

2), we already get d = v = 2. Now, Q satisfies the conclusion of

Proposition 10, and we know that Q is equivalent to a matrix of the form
(

pa p∗
p∗ Qn−1

)
, where

a ∈ Z and Qn−1 ∈ Mn−1(Z) with p - a and p - det Qn−1. If we write Q′
2 in the form (b, 2c, d), we
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have 4(c2 − bd) = δ. But we have p | δ, so we can assume that b = pb′ with p - b′. Using the same

notation as in Lemma 8, we have Q̃ =
(

a 0
0 −b′

)
, and −det Q̃ = ab′ mod p.

In order to be able to apply Lemma 8, it remains to prove that ab′ is a square modulo p, or
equivalently that the Hilbert symbols (pa, p)p and (pb′, p)p are equal. We know that Q satisfies the
conclusion of Proposition 10, and we have m = (n− 3)/2. By Proposition 2 (applied to Qn−1), we
get that (−1)(n−1)/2 det Qn−1 is not a square modulo p. We have then

−1 = ((−1)(n−1)/2 det Qn−1, p)p =
(

(−1)(n−1)/2 ∆
pa

, p

)
p

,

and then
(pa, p)p = −((−1)(n−1)/2∆, p)p

Since we have δ = −8|∆| and ∆ = (−1)s|∆|, we obtain δ = −(−1)s8∆, and then

(pa, p)p = −((−1)(n−1)/2+s × 2, p)p(−δ, p)p = εp(Q′
2)(−δ, p)p .

By definition of the Witt invariant, we have εp(Q′
2) = (pb′, δ)p, and then

(pa, p)p = (pb′, δ)p(−δ, p)p = (b′, δ)p(−1, p)p = (b′, p)p(p, p)p = (pb′, p)p

�
Step 8: The signature of Q is (r, s) with r > s, and the signature of Q′

2 is (2, 0). The signature
of Q′

n+2 is therefore (r, s + 2). After applying Algorithm 1, we obtain a totally isotropic subspace
F of dimension m = min(r, s + 2). The condition r > s implies r > n

2 , and r > n+1
2 > 3. We also

have s > 1, and s + 2 > 2, which proves that the subspace F has dimension at least 3.
Step 9: Let M be the dimension of G = E ∩ F . The subspaces E and F have dimension n and

m > 3, in a space of dimension n + 2. Their intersection has then a dimension M > m− 2 > 1.
Let us show that M = m − 2. This dimension is also the dimension of a totally isotropic

subspace for Q0. Since Q0 has a nonzero determinant, this dimension is bounded by min(r, s) = s.
We have then min(r − 2, s) 6 M 6 min(r, s). If s 6 r − 2, this gives the equality M = m. Since n
is odd, we can not have r = s, and the only possible remaining case is s = r − 1. In that case, the
inequality becomes m− 2 = s− 1 6 M 6 s.

Suppose that we have M = s = r − 1. This means that we can make a change of variables
over Z, such that Q is of the form Q = H⊕s ⊕ u, where u ∈ M1(Z) has coefficient (−1)s det Q.
Using Lemma 2 and Lemma 9, we can minimize Q at any prime p | det Q. But Q has already been
minimized at step 2, which implies that ∆ = ±1, and that the algorithm would have already stopped
at step 3. This proves that at step 9, this can not happen, and we must have M = s− 1 = m− 2.

It also proves that the totally isotropic subspace that the algorithm produces is maximal.

7 Solution in even dimension n > 6

Algorithm 7 (Solution in even dimension n > 6) Given an even dimension n > 6, and a
symmetric matrix Q0 ∈ Mn(Z) with determinant ∆0 6= 0 and signature (r, s). We assume that
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the factorization of ∆0 is known. This algorithm either proves the unsolvability of the equation
XtQ0X = 0, or it returns a totally isotropic subspace of dimension g > 1 with

g = min(r, s) if |r − s| > 2
min(r, s)− 1 6 g 6 min(r, s) if |r − s| = 2
min(r, s)− 2 6 g 6 min(r, s) if |r − s| = 0

1- Compute the signature (r, s) of Q0. If r = 0 or s = 0, then there is no real
solution, and stop the algorithm. If r < s, change Q0 into −Q0, and exchange r
and s.

2- Minimize Q0 using Algorithm 3. Let Q be the new matrix, and ∆ its determi-
nant.

3- If ∆ = ±1, apply Algorithm 2 to Q, and find a totally isotropic subspace for
Q of dimension s. Deduce a totally isotropic subspace for Q0 of the same dimension
and stop the algorithm.

4- Set Qn+1 = Q ⊕ −1. Let E be the subspace Qn of Qn+1 corresponding to this
decomposition into orthogonal subspaces.

5- Apply Algorithm 6, and get a totally isotropic subspace F for Qn+1, of dimen-
sion f > 2.

6- Determine the intersection G = E∩F, of dimension g > f−1 > 1. This subspace
is totally isotropic of Q. Deduce from it a totally isotropic subspace for Q0 of
dimension g.

Remark: Using this algorithm, we can obtain a decomposition of Q0 in the form Q0 = H⊕g ⊕D,
where D is of even dimension at most 4. Since we know how to solve D = 0, it is an easy task to
deduce a totally isotropic subspace for Q0 of maximal dimension.

We will now prove the valididy of the algorithm.
Steps 1–3: these steps are similar to the steps 1–3 of Algorithm 6.
Step 4: The form Qn+1 has an odd dimension, and its signature is (r, s + 1).
Step 5: If s + 1 > r, this implies that r = s = n

2 . In this case, Algorithm 6 finds a totally
isotropic subspace F for Qn+1 of dimension f > r− 1 = min(r− 1, s− 1) > 2. If s + 1 = r− 1, we
have f > s = min(r, s). In the other cases, we have s 6 r − 4, and f = s + 1 = min(r + 1, s + 1).
In any case, we have f > 2.

Step 6: In the case |r − s| 6 2, we have f > min(r − 1, s − 1). Taking the intersection with
E of codimension 1, we obtain g > f − 1 > min(r − 2, s − 2). In the other cases, we have
f = min(r + 1, s + 1), and then g > min(r, s). But we have the trivial inequality g 6 min(r, s),
which is true in all cases (because it corresponds to the maximal dimension of a totally isotropic
subspace over the reals). All this proves that the dimension g is indeed the dimension announced
in front of the algorithm. This dimension is g > 1, which means that the algorithm finds at least
one nontrivial solution.
Remark: It would be interesting to prove that Algorithm 7 indeed produces an isotropic subspace
of maximal dimension, or to modify it so as to get one.

8 Performance of the general algorithm

We have implemented Algorithm 5 in GP, and we report here the speed of this implementation.
The tested matrices have random integer coefficients in the range [−2t, 2t], where the value of t
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Figure 1: Performance in dimension 4

Figure 2: Performance in various dimensions

runs from 4 to 57. For each value of t, we have tested our algorithm with 100 different symmetric
matrices Q0. The total time spent in Algorithm 5, as well as the time needed for the factorization
is given by Figure 1.

We observe that the major difficulty in solving quadratic equations in dimension 4 is the fac-
torization of the determinant. No other factorization is needed in the rest of the algorithm, which
seems to run (on average) in linear time. It should not be difficult to prove that it runs in poly-
nomial time. A small irregularity is observed in Figure 1 around t = 50: this reflects the fact that
the determination of the 2–class group of a given quadratic discriminant δ using the algorithm of
[1], has a different behaviour in the average and in the worst case.

We have made the same tests for Algorithm 6 and Algorithm 7. The results of our experiments
are given in Figure 2, where we can compare their behaviour when the dimension varies. If we apply
Algorithm 7 in dimension 2n and Algorithm 6 in dimension 2n + 1, they both work in dimension
2n + 3: this explains the similarity between the behaviour in dimensions 2n and 2n + 1.
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We have also made a few experiments for higher dimensions. However, we have been limited
to n 6 25, because of the neverending time necessary for the factorization of the determinant. For
these high dimensions, we can make exactly the same remarks as for dimension 4: the running time
seems to be almost linear in t, but exponential in n.

9 Possible improvements

In [8], the reduction algorithm is described using exact arithmetic. It is highly conceivable that
an implementation of this algorithm using floating point arithmetic would dramatically improve
the total running time of Algorithm 5. Indeed, this reduction algorithm is used at several places.
First, it is used (in dimension 4) in step 2 (it is not necessary, but it reduces the transformation
matrix significantly). It is also used in step 10 (in dimension 6), where we have to reduce a matrix,
whose coefficients are typically of the size of ∆0. But it can also be used several times in step 6.
Indeed, the algorithm given in [1] for computing the 2–class group of a given discriminant, relies
in an essential way on the computation of square roots in this group. As we can see in [9], this
particular problem is equivalent to solving a ternary quadratic equation, a task that is solved in [8]
using the reduction algorithm in dimension 3.

For the same reason, a floating point reduction algorithm would certainly give a significant im-
provement for the solution of quadratic equations in higher dimensions by Algorithm 6 or Algorithm
7.
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